

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

MAT 321/MAA 311

COURSE TITLE:

ODE I

DATE:

20/07/2021

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) State the order and degree of the following differential equations

i)
$$x\left(\frac{dy}{dx}\right)^2 - 4y^3 = e^{2x} \tag{2 mks}$$

ii)
$$y^{III} + 3(y^{II})^3 = 5y$$
 (2 mks)

b) Prove that it is homogeneous and solve the differential equation

$$(3x^2 - y^2)dx + (xy - x^3y^{-1})dy = 0$$
(6 mks)

- c) Solve the linear fractional differential equation $(2x + y + 6)dx = -(x 2y 2)dy \tag{7 mks}$
- d) Solve the non-homogeneous differential equation $2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 3\sin x \tag{6 mks}$
- e) A car engine temperature by the time it is shut off is $180^{\circ}C$. The surrounding air temperature is $35^{\circ}C$. After 15 seconds have elapsed, the engine temperature is $150^{\circ}C$.
 - (i) How long will it take the engine temperature to cool to $50^{\circ}C$ (5 mks)
 - (ii) Find the engine temperature after 20 seconds (2 mks)

QUESTION TWO [20 MARKS]

(a) Obtain the differential equation having a solution as

$$y = Ae^{-2x} - Be^{3x} + C \tag{7 mks}$$

(b) Solve the differential equations using appropriate method

(i)
$$2ydx + x^2dy = 0, y(0) = -2$$
 (5 mks)

(ii)
$$(2xy + 3)dx + (x^2 - 1)dy = 0$$
 (8 mks)

QUESTION THREE [20 MARKS]

- (a) The sum of Kshs 2500 is invested at a rate of 6% per annum compounded continuously. What will be the amount after 6 years? (4 mks)
- (b) Using the integrating factor solve the differential equation

$$(x^2y - x)dy + (y + 2x^2)dx = 0$$
 (8 mks)

(c) Solve the following Bernoulli's equation

$$x^{2} \frac{dy}{dx} - 2xy = 3y^{4}; y(1) = 1$$
 (8 mks)

QUESTION FOUR [20 MARKS]

- (a) Verify that the functions $y_1 = x^2 + 2x + 2$ and $y_2 = e^x$ are linearly independent solutions of the differential equation $x \frac{d^2y}{dx^2} (2+x) \frac{dy}{dx} + 2y = 0$ (7 mks)
- (b) Solve the differential equation $x^2 dy + (y^2 xy) dx = 0$ (5 mks)
- (c) Use the method of undetermined coefficients to solve

$$2y^{II} - 4y^I - 6y = 3e^{2x} ag{8 mks}$$

QUESTION FIVE [20 MARKS]

(a) Solve the differential equation

$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 6y = 0$$
 (6 mks)

(b) Solve the equation by method of variation of parameter

$$y^{II} + 4y^I + 4y = x^2 e^{-2x} (7 \text{ mks})$$

(c) Test for exactness and solve the differential equation

$$(6y^2 - x^2 + 3)dy + (3x^2 - 2xy + 2)dx = 0$$
 (7 mks)