

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OFBSC (PHYSICS)

COURSE CODE:

SPC222

COURSE TITLE:

MODERN PHYSICS

DURATION: 2 HOURS

DATE: 5/2/2021

TIME:8:00-10:00AM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

- Indicate **answered questions** on the front cover.

Start every question on a new page and make sure question's number is written on each page This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

You may need to use the following constants:

Speed of light $c=3.0\times10^8 \text{m/s}$

Planks constant $h = 6.626 \times 10^{-34} J.s$

Electron charge $e = 1.6 \times 10^{-19} C$ Rest mass of an electron $M_e = 9.1 \times 10^{-34} Kg$

Rest mass of a neutron $M_n = 9.1 \times 10^{-34} \text{Kg} = 1.0087 \text{u} = 939.6 \text{ Mev/C}^2$

Rest mass of a proton $M_p = 9.1 \times 10^{-34} \text{Kg} = 1.0078 \text{u}$

Mass of deuteron $\binom{2}{1}H$ = 2.0141u

One atomic mass unit $u=1.66\times10^{-27} \text{Kg} = 931 \text{Mev/C}^2$

SPC 222: MODERN PHYSICS

 $\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \phi)$ Compton formula $\sigma = 5.670 \times 10^{-8} \text{w/m}^2 \cdot \text{k}^4$ Stefan's constant Chemical formula for gold ¹⁹⁷₇₉Au $^{238}_{92}U = 238.0508u$ Atomic mass of Atomic mass of $^{234}_{90}Th = 228.0436u$ Atomic mass of ${}^{4}_{2}He = 4.0026u$ $\varepsilon_0 = 8.854 \times 10^{-12} \text{F/m}$ Permittivity of free space $\frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{n^2} \right]$ Paschen series formula = 5760 years Half life of carbon $d = \left\{ \frac{M}{k_{\rho}} \left(1.66 \times 10^{-27} \right) \right\}^{\frac{1}{3}}$ Atomic spacing Bionomial expression $(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2!} \pm \cdots \dots \dots$ $\omega_c = 2.898 \times 10^{-3} \text{m.K}$ Wien's constant

QUESTION ONE[30 Marks]

(a) State the postulates of special relativity

[2 marks]

(b) Define the term Lorentz transformation

[1 mark]

- (c) Two observers, A on earth and B in a spacecraft whose speed is $2x10^8$ m/s, both set their watches to the same time when the spacecraft is abreast of the earth. How much time must elapse by A's reckoning before the watches differ by 1s? [3 marks]
- (d) What is a massless particle?

[1 mark]

- (e) A meter stick appears only 60cm to an observer. What is its relative speed? How long does it take to pass the observer?[4 marks]
- (f) What is a black body?

[1 mark]

(g) Deduce Stefan's Law from Planck's Law

[3 marks]

- (h) In a photoelectric effect, it was observed that for light of wavelength 4000 Å, a stopping potential of 2.0 volts is needed and for light of wavelength 6000 Å, a stopping potential of 1.0 volt. From these data, calculate the work function of the material and the Planck's constant. [3 marks]
- (i) Differentiate between nuclear fission and nuclear fussion.

[2 marks]

(j) What is the rest mass energy of an electron (me = 9.1×10^{-31} kg)?

[2 marks]

- (k) Find the de Broglie wavelength of (i) electron moving with velocity 1000 m/s (ii) an object of mass 100 gram moving with the same velocity [2, 2 marks]
- (l) Experiments show that 13.6eV is required to separate a hydrogen atom into a proton and an electron, that is, its binding energy is -13.6eV. Find the orbital radius and velocity of the electron in a hydrogen atom [3 marks]

QUESTION TWO [20 Marks]

- a) In a Compton experiment, an energetic photon is scattered by an electron at rest. Write down the energy and conservation laws. [4Marks]
- b) Use the equations in (a) above to prove that; $\Delta \lambda = \lambda' \lambda = \frac{h}{m_0 c^2} [1 \cos \phi]$ where ϕ is the angle

between the incident and outgoing light rays while λ and λ are the energies of the incident and emitted photons respectively. [12Marks]

a) A 30 keV x-ray photon strikes the electron initially at rest and the photon is scattered through an angle of 30°, what is the recoil velocity of electron? [4Marks]

QUESTION THREE [20 Marks]

- a) Name and describe the process by which the photoelectrons are released from the cathode of a photocell by electromagnetic radiation. [4Marks]
- b) The wavelength of the photoelectric threshold for silver is 3,250×10⁻¹⁰m. Determine the velocity of electron ejected from a silver surface by ultraviolet light of wavelength 2,536×10⁻¹⁰m.

[4Marks]

- c) Show that photoelectric effect can not take place with a free electron. [4Marks]
- d) When two ultra violet beams of wavelengths $\lambda_1 = 280nm$ and $\lambda_2 = 490nm$ fall on a lead surface they produce photoelectrons with maximum energies 8.57eV and 6.67eV, respectively
- i). Estimate the numerical value of the Planck's constant [2Marks]
- ii). Calculate the work function of lead [2Marks]
- iii). Calculate the cut off frequency of lead [2Marks]

QUESTION FOUR [20 Marks]

- a) Define the following terms; Length contraction and Time dilation [4Marks]
- b) Starting with the expression of the total energy as E=E₀+K.E, derive the expression for the low speed approximation for the Kinetic energy, K.E. [6Marks]
- c) Show that for massless particles, the relation between their energy and mass is E=Pc, where the symbols have their usual meaning [4Marks]
- d) The relation of total energy, E and momentum, P for a relativistic particle is; $E^2 = c^2 p^2 + m^2 c^2 \text{ where } m \text{ is the rest mass and } c \text{ is the velocity of light. Use the relativistic relations } E = \hbar \omega \text{ and } P = \hbar k \text{ where } \omega \text{ is the angular frequency and } k \text{ is the wave number, show that the product of group velocity } v_g \text{ and phase velocity } v_p \text{ is equal to } c^2 \text{ } [6 \text{ Marks}]$

QUESTION FIVE [20 Marks]

- a) Derive the expressions for both the decay law and half-life [4Marks]
- b) A sample of 1g of $^{209}_{83}Bi$ with a half life of 2.7 x 10^7 yr decays into a stable isotope of thallium by emitting alpha particles. What would be the activity of the sample? [3Marks]
- c) Find the mean-life of ⁵⁵Co radionuclide if its activity is known to decrease 4.0% per hour. The decay product is non-radioactive. [3Marks]
- d) What proportion of ²³⁵U was present in a rock formed 3,000×10⁶ years ago, given that the present proportion of ²³⁵U to ²³⁸U is 140? [4Marks]
- e) The mass of chlorine ³⁵/₁₇ nucleus is 34.980u. Calculate the mass defect and hence the binding energy per nucleon. Sketch a graph of binding energy per nucleon as a function of mass number indicating the position of the stable nucleus. [6Marks]