

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR, THIRD YEAR SPECIAL/ SUPPLIMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: STA 341

COURSE TITLE: THEORY OF ESTIMATION

DATE:

05/02/2021

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Questions ONE and ANY OTHER TWO

QUESTION ONE [30 MARKS]

- a) Define the following terms
 - Consistency (i)

(2mks)

(ii) Mean squared Error (2mks)

- b) Suppose $x_1, x_2, x_3, \dots x_n$ be a random sample from the Poisson distribution with mean λ . Show that the statistic $T = \sum_{i=1}^{n} x_i$ is sufficient for λ .
- c) Let $x_1, x_2, x_3, \dots x_n$ form a random sample of size n from a Bernoulli distribution with parameter θ . If d(x) is unbiased estimator of θ . Find
 - Fisher's information $I(\theta)$. (i)

(7mks)

(ii) Gramer-Rao lower bound for d(x). (3mks

(iii) Uniformly minimum variance unbiased estimator of θ (2mks)

d) Let $f(x;\theta) = \frac{2}{\theta^2}(\theta - x)$, $0 < x < \theta$. Let $x1, x2, x3, \dots xn$ be a random sample from X. Obtain the estimate of θ by method of moments

(8mks)

QUESTION TWO (20 MARKS)

- a) If $X \sim N(\mu, \sigma^2)$. Let $x_1, x_2, x_3, \dots x_n$ be a random sample from the population. Find the maximum likelihood estimators of σ^2 when μ is known.
- b) Suppose $x_1, x_2, x_3, \dots x_n$ form a random sample of size n from a normal population having mean μ and σ^2 , let $\bar{x}_n = \frac{1}{n} \sum_{i=0}^n x_i$ and $S_n = \frac{1}{n-1} \sum_{i=0}^n (x_i - \bar{x}_i)^2$ be the sample mean and variance respectively. Show that S_n is unbiased estimator for σ^2 . (7mks)

QUESTION THREE (20 MARKS)

a)
$$x_1, x_2, x_3, \dots \dots x_n$$
 is random sample from a population given by
$$f(x) = \begin{cases} 1, & \lambda - \frac{1}{2} < x < \lambda + \frac{1}{2} \\ 0, & elsewhere \end{cases}$$

Prove that \bar{x} is a consistent estimator for λ

(12mks)

b) Let $x_1, x_2, x_3, \dots x_n$ denote a random sample from a Bernoulli distribution pdf

 $f(x;\theta) = \theta^x (1-\theta)^{1-x}$ for x = 0,1. Show that the family of Bernoulli distribution belongs to one parameter exponential family hence determine a sufficient statistic for θ . (8mks)

QUESTION FOUR (20 MARKS)

(a) Let X have pdf $f(x; \theta) = (1 - \theta)\theta^x$ for $x = 0, 1, 2, \dots$

Let $x_1, x_2, x_3, \dots x_n$ be a random sample, take $\varphi(\theta) = \frac{\theta}{1-\theta}$. Find

Fisher's information $I(\theta)$. (i)

(7mks)

(ii) Gramer-Rao lower bound for d(x). (3mks

(iii) Minimum variance best unbiased estimator of θ

(4mks)

(b) Suppose that $x_1, x_2, x_3, \dots x_n$ form a random sample of size n from a Bernoulli distribution with parameter θ . Show that the statistic $T = \sum_{i=1}^{n} x_i$ is sufficient for θ . (6mks)

QUESTION FIVE (20 MARKS)

a) Students in STA 341 class claimed that doing there assignment had not helped them prepare for the main exam. The exam score Y and assignment score X for 4 students were as follows

X	Y	XY	X ²
96	95	9120	9216
77	80	6120	5929
78	79	6162	6064
64	79	5056	9409

Obtain $\hat{\beta}_0$ and $\hat{\beta}_1$ and write prediction equation

(10mks)

b) Let $x_1, x_2, x_3, \dots \dots x_n$ be a random sample from the Poisson distribution, take $\varphi(\theta) = e^{-\theta}$. Find Gramer-Rao lower bound for $d(\underline{x})$. (10mks)