

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPLEMETARY EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)& BSC (PHYSICS)

COURSE CODE: SPH 313

COURSE TITLE: QUANTUM MECHANICS I

DATE: 1/2/21 TIME: 11-1 Pm

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [30 MARKS]

- a) Show that $[\hat{x}, \hat{p}_y] = 0$ [3 marks]
- b) An electron with energy of 1.0eV is incident on a barrier 10.0eV high and [4 marks] 0.50nm wide. Find its transmission probability $[\hbar=1.054x10^{-34}Js]$.
- Find the flux $J_x = \frac{\hbar}{2im} \left[\psi^* \frac{d\psi}{dx} \left(\frac{d\psi^*}{dx} \right) \psi \right]$ associated with the wave function [5 marks] $\psi(x) = Ae^{ikx} + Be^{-ikx}$.
- d) Find the expectation value $\langle x \rangle$ for the states n=0 and n=1 of a simple [5 marks] harmonic oscillator.
- e) Give any two conditions satisfied by a well behaved wave function. [2 marks]
- f) A particle is described by the wave function $\psi(x) = \begin{cases} 0, & x < 0 \\ \sqrt{2}e^{-x}/L, & x \ge 0 \end{cases}$ where L = 1nm. Calculate the probability of finding the particle in region $x \ge 1nm$.
- g) Show that the zero point energy of a harmonic oscillator could not be lower than $\hbar\omega/2$ without violating the uncertainty principle. [5 marks]
- h) What is the parity of 2p and 3d states of a hydrogen atom? [2 marks]

QUESTION TWO [20 MARKS]

- a) In the ground state of a hydrogen atom show that the probability P for the electron to lie with within a sphere of radius R is: $P = 1 exp\left(\frac{-2R}{a_0}\right)\left(1 + \frac{2R}{a_0} + \frac{2R^2}{a_0^2}\right) \text{ given that:} \quad \psi_{100} = (\pi a_0^3)^{-1/2} exp(-r/a_0).$
- b) Show that in spherical polar coordinates: $\frac{L^2}{(i\hbar)^2} = \frac{\partial^2}{\partial \theta^2} + \left(\frac{1}{\sin^2 \theta}\right) \frac{\partial^2}{\partial \varphi^2} + \cot \theta \frac{\partial}{\partial \theta}.$ [12 marks]

QUESTION THREE [20 MARKS]

- a) Show that for a simple harmonic oscillator $\Delta x \Delta p_x = \hbar(n + \frac{1}{2})$ and its in agreement with uncertainty principle. [12 marks]
- b) Prove that the Eigen value of the Hermitian operator is real. [8 marks]

QUESTION FOUR [20 MARKS]

- a) The spin wave functions of two electrons is: $\frac{(x\uparrow x\downarrow x\downarrow x\uparrow)}{\sqrt{2}}$. What is the Eigen value [5 marks] of S_1 . S_2 ?
- b) Show that for a neutron-proton system; $\sigma_p \sigma_n = \begin{cases} -3, & \text{for singlet state} \\ 1, & \text{for triplet state} \end{cases}$ [7 marks]

c) Find the expectation values of kinetic energy, potential energy and total energy of hydrogen atom in ground state for $\psi_0 = \frac{e^{-r/a_0}}{\sqrt{\pi a_0^3}}$ where a_0 is the Bohr's radius.

[8 marks]

QUESTION FIVE [20 MARKS]

a) Consider the Hamiltonian for a one dimensional system of two particles of masses m_1 and m_2 subjected to potential that depends only on the distances between the particles $x = x_1 - x_2$ given by: $\widehat{H} = \frac{\widehat{p}_1^2}{2m_1} + \frac{\widehat{p}_2^2}{2m_2} + V(x_1 - x_2)$. Write down the Schrödinger equation using new variables x and X where $x = x_1 - x_2$ and $X = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$.

[12 marks]

b) Using separation of variables find equation governing the evolution of centre of mass and the relative distance of the particles. Interpret your results.

[8 marks]