

(Knowledge for Development)

KIBABII UNIVERSITY

MAIN EXAMINATION

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

FOR THE DEGREE OF BACHELOR OF EDUCATION

MATHEMATICS

COURSE CODE:

MAP 212

COURSE TITLE:

REAL ANALYSIS I

DATE: 18/02/2021

TIME: 2 PM- 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

- (a) Explain what is meant by saying that a number r is rational. (2mks)
- (b) Let $\{A_i: i=1,2...\}$ be a collection of countable sets. Show that $A=\bigcup_i A_i$ is countable.

(3mks)

(c) Give the definition of neighbourhood of a set

(2mks)

(d) Define a subsequence.

(2mks)

(e) Let (x_n) be a sequence of real numbers. Prove that $x_n \to x$ if and only if $\overline{lum} x_n = \lim \inf x_n = x$.

(7mks)

(f) State and prove the intermediate value theorem.

(10mks)

(g) Giving one example, define a partition of an interval.

(4mks)

QUESTION 2 (20 MARKS)

(a) Show that the set of real numbers is a metric space.

(10mks)

(b) Let $A \subseteq \mathbb{R}$. Prove that A is closed if and only if A^c is open.

(6mks)

(c) Let $B \subseteq \mathbb{R}$ be given by $B = \{x \in \mathbb{R}: 2 < x \le 4\}$. Show that B is neither open nor closed.

(4mks)

QUESTION 3 (20 MARKS)

- (a) Let $x, y, z \in \mathbb{R}$. Show that $|x y| + |y z| \ge |x z|$. (4mks)
- (b) Let $A, B, C \subset X$. Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (10mks)
- (c) Prove that $\sqrt{7}$ is irrational. (6mks)

QUESTION 4 (20 MARKS)

- (a) Give the definition of limit of a function and prove that this limit is unique. (6mks)
- (b) Define the concept of uniform continuity.

(2mks)

- (c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = |x| \ \forall \ x \in \mathbb{R}$. Show that f is continuous on \mathbb{R} . (7mks)
- (d) Let f(x) $\begin{cases} 3-x, & x>x\\ 1, & x=1 \text{ Sketch the graph of f and find } f(1^+) \text{ and } f(1^-)\\ 2x, & x<1 \end{cases}$ (5mks)

QUESTION 5 (20 MARKS)

- (a) Let (x_n) be a sequence of real numbers. Prove that if $x_n \to x$ then $|x_n| \to |x|$. (6mks)
- (b) Let (x_n) be a monotonic sequence of real numbers. Prove that (x_n) is convergent iff it is bounded. (10mks)
- (c) Let (x_n) be a sequence of real numbers. Prove that if (x_n) is convergent then it is Cauchy .(4mks)