

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 449

COURSE TITLE: NON - PARAMETRIC METHODS

DATE: 20/7/2021 **TIME**: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over

QUESTION 1:

a) State the parametric alternative to the following non-parametric tests:

i)	The sign test	(2 marks)
ii)	The Wilcoxon test(U test)	(2 marks)
iii)	The kruskal-wallis test(H test)	(2 marks)
iv)	The Friedman's test	(2 marks)

- b) The non-parametric tests; the sign test and the paired sign test are considered wasteful of information. Explain why this is so and state the statistical remedy to that. (4 marks)
 - c) Prove that under the assumptions required by the Signed- rank test, T⁺ (which is the sum of the ranks assigned to positive differences) is a value of a random variable with mean,

$$\mu = \frac{n(n+1)}{4} \tag{5 marks}$$

and the variance,

$$\sigma^2 = \frac{n(n+1)(2n+1)}{24}$$
 (5 marks)

d). The bacteria counts per unit volume are shown for two types of cultures A and B. Four observations were made for each culture

Culture A	Culture B		
27	32		
31	29		
26	35		
25	28		

Does the data present sufficient evidence to indicate a difference in the population distribution of bacteria counts? Test using a value of α near 0.05 (5 marks)

e) Using the number of runs above and below the median, test the randomness of the following set of 2-digit numbers.

QUESTION 2:

The green pod yield (kg) under four treatment is as tabulated below

	Treatment						
No. of plots	1	2	3	4			
1	3.17	3.44	3.15	2.48			
2	3.40	2.88	2.69	2.37			
3	3.50	2.97	3.10	2.58			
4	2.87	3.27	2.80	2.84			
5	3.88	3.94	3.45	3.00			
6	4.00	3.87		2.48			
7	3.60	3.25					

The hypothesis that there is no difference among four treatments by:

i) the median test

(10 marks)

ii) the Kruskal walli's test

(10 marks)

QUESTION 3:

a) The following are the scores of certain randomly selected students at mid-term (MT) and final examinations.

MT scores X	55	57	72	90	57	74	
Final score Y	80	76	63	58	56	37	75

The hypothesis H_0 that the distribution of scores at two occasions is the same against H_1

i.e.
$$H_0: F_Y(x) = F_X(x)$$
 Vs $H_1: F_Y(x) \neq F_X(x)$

Use the Mann-Whitney U-test.

(10 marks)

b) . On a lonely country road, the number of vehicles passing a particular spot is noted for 60 consecutive minute as follows.

Number of vehicles	0	1	2	3	4	5
Number of minutes	25	15	10	5	3	2

Test
$$H_0$$
: $F(x) = F_0(x)$

Where $F_0(x)$ is a Poisson distribution at 5% level of significance.

Hint

 λ can be estimated using the above:

 λ = mean number of vehicles per minute.

$$\lambda = \frac{\text{Number of vehicles}}{\text{number of minutes}} = \frac{15}{60} = 0.25$$

(10 marks)

QUESTION 4:

In 100 families each containing three children, the number of girls are shown.

No. of girls	0	1	2	3
No. of families	8	27	45	20

What frequencies would you expect if the number of the girls in families with three children has a binomial distribution B(n, p) = B(3, 0.5).

Are these data consistent with this distribution?

(20 marks)

QUESTION 5:

a) A die is thrown 120 times with the following results

Face	1	2	3	4	5	6
Frequency	18	23	16	21	18	24

Is the die fair?. Test at $\alpha = 0.05$ level of significance.

(10 marks)

b) A genetic theory indicates that for a certain species of flowers, white, red, and blue flowers, should occur in the ration 5:3:1. Suppose that in a random sample of 180 flowers, 90 are white, 65 are red, and 25 are blue. What frequencies would we expect if the theory is correct? At 1% level of significance, test the genetic theory that

 H_0 : the genetic theory is correct

 H_1 : the genetic theory is incorrect

(10 marks)