

(Knowledge for Development)

KIBABII UNIVERSITY

MAIN EXAMINATION

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 204

COURSE TITLE:

REAL ANALYSIS I

DATE: 18/02/2021

TIME: 2 PM-4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

a) Define the following terms

i.	Disjoint sets	(2marks)

b) Prove that for some
$$n \in \mathbb{N}$$
, $\sum_{k=1}^{n} k^3 = \frac{1}{4} n^2 (n+1)^2$ (6marks)

c) Show that
$$|a| + |b| \ge |a + b|$$
 (4marks)

e) Let A, B and C be sets. Show that

i.
$$A(B \cup C) = (A \setminus B) \cap (A \setminus C)$$
 (3marks)

ii.
$$A(B \cap C) = (A \setminus B) \cup (A \setminus C)$$
 (3marks)

QUESTION TWO (20 MARKS)

a) Let \mathbb{F} be a field and $x, y \in \mathbb{F}$. Show that $|x| - |y| \le |x - y|$. (4marks)

b) Show that the power set
$$P(\mathbb{N})$$
 of \mathbb{N} is countable (5marks)

c) Define a function $f: \mathbb{N} \to \mathbb{Z}$ as $(n) = \begin{cases} \frac{n+1}{2} & \text{where n is odd} \\ 1 - \frac{n}{2} & \text{where n is even} \end{cases}$. Show that f is a

bijection (6marks)

d) (i)Define the term Cartesian product of sets X and Y. (2marks)

(ii) Given that $X = \{0,1\}$ and $Y = \{-1,0,2\}$, find the Cartesian product of X and Y.

(3marks)

QUESTION THREE (20 MARKS)

a) Define the following terms

i.

•	Complete ordered field	(2marks)
		(

b) Let \mathbb{F} be an ordered field. Define a metric d on the field as d(x,y) = |x - y| for $x,y \in \mathbb{F}$. Show d is a metric. (6marks)

c) Find the infimum, supremum, minimum and maximum of the following sets.

i.
$$A = \left(-1, \frac{1}{n}\right), n \in \mathbb{N}$$
 (4marks)

ii.
$$B = \left[\frac{1}{n}, \frac{2+n}{n}\right], n \in \mathbb{N}$$
 (4marks)

QUESTION FOUR (20 MARKS)

a) State the completeness axiom (2marks)

b) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2 + 1$ and $g(x) = x^3 - 2x - 3$. (5 marks)

c) Let $n \in \mathbb{N}$. Let \sim be a relation on \mathbb{N} be defined as $x \sim y$ if $x \equiv y \mod(n)$, that is x - y is divisible by n. Show that \sim is an equivalence relation. (6marks)

d) Differentiate between injective and subjective functions giving examples in each case. (4marks)

e) If \mathbb{F} is an ordered field and $A \subset \mathbb{F}$ is non empty then A has at most one least upper bound and at most one least lower bound. Proof (3marks)

QUESTION FIVE (20 MARKS)

a) Let A and B be two finite sets. Show that $(A \cap B)^c = A^c \cup B^c$ (5marks) b) Prove that there is no rational number x such that $x^2 = 2$. (6marks) c) Let \mathbb{F} be an ordered field and $a \in \mathbb{F}$, $a \neq 0$ if $a^2 > 0$ (4marks)

d) Show that for $n \ge 1$, $8^n - 3^n$ is divisible by 5 for $n \in \mathbb{N}$. (5marks)