

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

THIRD YEAR SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE: MAT 306

COURSE TITLE: GROUP THEORY II

DATE:

@10/02/2021

TIME: 11 AM -1 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

a.	De	Define the following			
		i.	Conjugacy class	(2marks)	
	i	i.	Centralizer	(2marks)	
		ii.	P-groups	(2marks)	
			Sylow p-subgroup	(2marks)	
b.		v.	that every nilpotent group is solvable	(4 marks)	
c.		Show that if H is a proper subgroup of a nilpotent group G , then H is a proper subgroup of $N_G(H)$ (10marks)			
Ο.		(10marks)			
d			w that all finite abelian groups are soluble	(8 marks)	
QUESTION TWO (20MARKS)					
a	. Г	Defin	e the following sets		
		i.	Upper central series	(2marks)	
		ii.	Nilpotent group	(2 marks)	
		iii.	Central series	(2marks)	
1	o. S	Show that if G is the internal direct product of H and K, then G is isomorphic to the			
			nal direct product H×K	(9marks)	
ì	c.	Shov	w that if G is a group, G acts on itself by conjugation: $g*x = gxg^{-1}$ for g,	x∈ G	
				(5marks)	

QUESTION THREE (20MARKS)

a. State the following theorems (2marks) Cauchy theorem i. (2marks) Sylow's first theorem ii. (2 marks) Sylow's second theorem iii. b. Show that any cyclic abelian group is isomorphic to z or z_n for some n. (7marks) (7marks) Show that every finite group G has a composition series QUESTION FOUR (20MARKS) a. Define the following (2marks) Maximal normal subgroup (3marks) Composition series ii. b. Show that every p-subgroup of G is contained in some sylow p- subgroup of G. (8marks) c. Let p be prime, show that the center of a nontrivial finite p-group is nontrivial (7marks) **QUESTION FIVE (20MARKS)** a. Define the following (2marks) External direct product i. (2marks) Internal direct product ii. (6marks) b. State the Jordan - holder theorem c. Let p be prime. Show that the order of a finite p-group is pn for some n>0 (5marks) d. Show that a sylow p-subgroup of G is unique if and only if it is normal in G. In particular (5 marks) it is unique if the group is abelian.