

(Knowledge for Development)

KIBABII UNIVERSITY

MAIN EXAMINATION

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAP 222

COURSE TITLE:

REAL ANALYSIS I

DATE: 18/02/2021

TIME: 2 PM-4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

a. Define the following

i. Metric space (4marks)

ii. Open set (2marks)

b. If $\{E_1, E_2, \dots, E_n\}$ is any finite collection of closed subsets of X w.r.t.(X,d), show that $\bigcap_{i=1}^n E_i$ is also closed (5marks)

c. Let $a, b \in \mathbb{R}$ such that $a \le b + \varepsilon$ for every $\varepsilon > 0$. Show that $a \le b$ (5marks)

d. For sets A,B and C, Show that A \cup (B \cup C) = (A \cup B) \cup C (6marks)

e. For any two finite sets A and B, show that $(A \cup B)^C = A^C \cap B^C$ (8 marks)

QUESTION TWO (20MARKS)

such that $a < x \le b$

a. Define the following sets

i. Bounded below (2marks)

ii. Bounded above (2 marks)

iii. Infimum (2marks)

(5marks)

b. Show that if x and y are positive real numbers, then x < y iff $x^2 < y^2$ (9marks)

c. Let S be a non-empty set of real numbers with sup say b. show that $\forall a < b \exists x \in S$

QUESTION THREE (20MARKS)

- a. Define the following
 - i. Surjective (2marks)
 - ii. Injective (2marks)
- b. Consider the function $f(1, -\infty) \to (0, 1)$ defined by $f(x) = \frac{x-1}{x+1}$. Show that f posses an

inverse
$$f^{-1}(y) = \frac{y+1}{1-y}$$
 (5marks)

- c. Show that the empty set Ø is always open (5marks)
- d. Let A, B and C be sets. Show that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ (6marks)

QUESTION FOUR (20MARKS)

- a. Define the following
 - i. Composition of a function (2marks)
 - ii. Inverse of a function (2marks)
 - iii. Cardinality (2marks)
- b. Show that a set S of real numbers is bounded iff $\exists k \in \mathbb{R}$ such that $|x| \leq k$ for

all
$$x \in S$$
 (8marks)

c. Show that $f(x) = \begin{cases} \frac{2x-6}{x-3} & when \ x \neq 3 \\ 2 & when \ x = 3 \end{cases}$ is continuous at x = 3 (6marks)

QUESTION FIVE (20MARKS)

a. Define the following

i. Removable discontinuity (2marks)

ii. Infinite discontinuity (2marks)

iii. Finite discontinuity (2marks)

b. Show that \emptyset , X are always closed in (X, d) (3marks)

c. Show that if $x \in \mathbb{R}$ then |xy| = |x||y| (4marks)

d. Show that an infinite subset of a countable set is countable (3marks)

e. Let (X, d) be a metric space. Show that the union of any arbitrary family of subsets open in (X, d) is open in (X, d). (4marks)