

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE:

MAT 824

COURSE TITLE:

OPERATOR THEORY I

DATE: 23/07/21

TIME: 9.00AM - 12.00 pm

INSTRUCTIONS TO CANDIDATES

Answer Any other THREE Questions

TIME: 2 Hours

QUESTION ONE (20 MARKS)

a. Show that if X is an inner product space then $||x||^2 = \langle x, x \rangle^{1/2}$ defines a norm on X.

(5 marks)

- **b.** Show that in an inner product space, inner product is continuous (5 marks)
- c. Show that every inner product space is uniformly convex (5 marks)
- **d.** Show that if $T \in B(H)$ then there is a unique $U \in B(H)$ such that $\langle Tx, y \rangle = \langle x, Uy \rangle$ for all $x, y \in H$ (5 marks)

QUESTION TWO (20 MARKS)

- a. Show that if $T \in B(H)$ and $\langle Tx, x \rangle = 0$ then T = 0 for all $x \in H$ (5 marks)
- b. Show that the Hilbert adjoint T^* is a bounded linear operator with $||T^*|| = ||T||$ (5 marks)
- c. Show that if M is a closed subspace of H then ${\bf Pm}$ is a projection having range M. (5 marks)
- d. Show that if M is a closed subspace of Hilbert space H and $x \in H$ then there is a unique element $y \in M$ and $z \in M^{\perp}$ such that x = y + z (5 marks)

QUESTION THREE (20 MARKS)

Let T, $T_1, T_2 \in B(H)$ and $\alpha \in C$. Show that

- a. $(T_1 + T_2)^* = T_1^* + T_2^*$ (4marks)
- b. $(\alpha T)^* = \alpha^- T^*$ (3marks)
- c. $(T_1T_2)^* = T^*_2T^*_1$ (3marks)
- d. $||T^*T|| = ||T||^2$ (10 marks)

QUESTION FOUR (20 MARKS)

- a. Let $T \in B(H,K)$. Show that there exists at most one operator $S \in B(K,H)$ such that ST = I and TS = I (3 Marks)
- b. Let $S \in B(H,K)^{\times}$ and $T \in B(K,L)^{\times}$. Show that the operator $TS \in B(H,L)^{\times}$, with $(TS)^{-1} = S^{-1}T^{-1}$

(4Marks)

c. If $T \in B(H)$ is such that $||T|| \le 1$, show that I - T is invertible and the series

 $\sum_{n=0}^{\infty} T^n = 1 + T + T^2 + \dots$ is absolutely convergent, its sum equals $(I - T)^{-1}$ and $||(I - T)^{-1}|| \le (1 - ||T||)^{-1}$ (8 Marks)

d. If $T \in B(H)$ is self adjoint i.e., $T = T^*$, show that $\rho(T) = ||T||$. (5 marks)

QUESTION FIVE (20 MARKS)

- **a.** If $T \in B(H)_+$ is invertible, show that $T^{-1} \in B(H)_+$ (3Marks)
- **b.** Let $T \in B(H)^{\times}$ be invertible. Show that the square root $T^{\frac{1}{2}}$ is invertible and

$$\left(T^{-1}\right)^{\frac{1}{2}} = \left(T^{\frac{1}{2}}\right)^{-1}.$$
 (5 Marks)

- c. If $T \in B(H;K)$ is invertible show that $|T| \in B(H)^{\times}$ (2marks)
- **d.** Let $T \in B(H)^{\times}$. Show that T is invertible if and only if T is uniformly positive (10 marks)