

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 440:

COURSE TITLE:

ELECTROCHEMISTRY

DURATION: 2 HOURS

DATE: 15/07/2021

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

- Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 6 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question One (30 Marks)

a)

 The Lead-acid cell, also called an acid accumlator has the overall spontaneous reaction below.

 $Pb_{(s)} + PbO_{2(s)} \rightarrow PbSO_{4(s)}$

- i. Write the equation of the reaction at the anode. [02]
- ii. Write the equation of the reaction at the Cathode. [02]
- iii. Differentiate between a galvanic cell and an electrolytic cell. [02]
- b) An element X has r.a.m of 88. When a current of 0.5A was passed through the fused chloride of X for 32minutes and 10 seconds, 0.44g of X was deposited at the cathode. (Use 1 Farad = 96,500 coulombs)
 - i. Calculate the quantity of electicity needed to liberate one mole of X.
 ii. Write the formular for the cation of X.
 iii. Write formular for the chloride of X.

c)

- i) For a galvanic cell combining Zn and Cu, calculate the standard cell potential E° (given standard reduction potential for Zn^{2+} is -0.76V and that for Cu^{2+} is +0.34V)
- ii) Calculate the cell potential for the Zn//Cu cell at $[Zn^{2+}_{(aq)}] = 10M$ and $[Cu^{2+}_{(aq)}] = 0.1M$
- d) The oxidation and reduction half cell reactions of the following overall process exist in separate half cells.

$$Cr_2O_7^{2^-}(aq) + I^-(aq) \rightarrow Cr^{3^+}(aq) + I_{2(s)} E^{\circ} = 0.8254V.$$

Given the stoichiometric equation is,

 $Cr_2O_7^{2-}(aq)$ +6 $I^{-}(aq)$ 14 $H^{+}(aq)$ \longrightarrow $Cr^{3+}(aq)$ + 3 $I_{2(s)}$ + 7 $H_2O_{(l)}$ and the different concentrations are tabulated [05]

Species	Concentration
$\operatorname{Cr}^{3+}_{(aq)}$	2.0×10^{-3}
$Cr_2O_7^{2-}(aq)$	2.0
$H^+_{(aq)}$	1.0
I-(aq)	1.0

e) Dichromate (VI) ions are powerful oxidising agents and are reduced to chromium III ions. This colour change was once used in 'breath test' apparatus to determine if a driver had consumed excessive alcohol. Explain the term 'redox reaction' [01]

- f) Aluminium metal is extracted from molten bauxite (Al₂O₃.2H₂O) using electrolysis. Cryolite (AlF₃) added to the ore in order to lower the melting point required and thus the energy required by the process.
 - i. Write an half equation to show how aluminium metal is produced from the ore. [01]
 - iv. What mass of aluminium metal would be produced if a current of 30,000A is applied to a cell for 1 hour. [04]
 - v. In the molten mixture there is a mixture of anions which mostly consists of O₂⁻ and F⁻. Write an equation to show which of these anions will be oxidised in the cell? [01]

Question two (20 Marks)

a) State Kohlrausch's law.

[01]

b) The table below shows limiting molar conductivies of common anions and cations at 298K;

Cation	Limiting molar conductivity (\(^\circ m \) Scm^2mol^-	Anion	Limiting molar conductivity (\^\circ m)Scm^2mol^-
H ⁺	349.6	OH-	199.1
Na ⁺	50.1	Cl ⁻	76.3
K ⁺ Ca ²⁺	73.5	Br ⁻	78.1
	119.0	Ac ⁻	40.0
Mg^{2+}	106.0	SO ₄ ² -	160.0

Use it to answer the questions (a) and (b) that follow.

Explain the difference in conductivity between;

- i. H⁺ ion and Na⁺ ion
- ii. Na⁺ and Ca²⁺
- iii. SO_4^{2-} and OH^- [03]
- iv. Calculate the value of $(^{\circ} _{m})$ for CaCl₂ and MgSO₄ solutions.

[02]

- c) The limiting molar conductivity ($^{\circ}$ m) values for NaCl, HCl and NaAc are 126.4 Scm²mol⁻, 425.9 Scm²mol⁻, and 91.05 Scm²mol⁻, respectively. Use these values to calculate the value of ($^{\circ}$ m) for HAc. [03]
- d) The conductivity of 0.001028mol.L⁻ acetic acid is 4.95 x 10⁻⁵scm⁻¹. Calculate its dissociation constant if ($^{\circ}$ m)_{acetic acid} is 390.05 Scm²mol⁻ [03]

e) The conductivity of sodium chloride at 298K was determined at different concentrations and the results tabulated as below.

Concentration (mol.m ⁻³)	Conductivity k x 10 ² (Sm ²⁾	Molar conductivity (\lambda m)Scm ² mol ⁻	C ^{1/2}
0.001	1.237		
0.010	11.85		
0.020	23.15		
0.050	55.58		
0.100	106.7		

Calculate $(\land m)$ for all values of concentration given, and draw a graph between $(\land m)$ and $C^{1/2}$. Use the graph to find the value of $\land \circ m$. [05]

f) Explain how using Kohlraush law one cam determine \wedge° m for distilled water. [03]

Question three (20 Marks)

b) The Nickel Cadimium cell, also called an alkaline cell has the overall spontaneous reaction

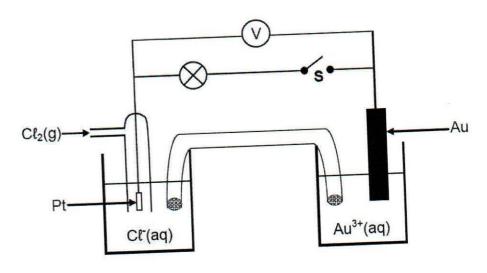
 $Cd_{(s)} + NiO(OH)_{(s)} \rightarrow Cd(OH)_{2(s)} + Ni(OH)_{2(s)}$ iv. Write the equation of the reaction at the **anode**.

[02]

v. Write the equation of the reaction at the Cathode.

[02]

vi. Explain how the alkaline cell recharges itself.


[01]

vii. State **three** disadvantages and **two** disadvantages of the alkaline accumulator over the Lead-acid cell. [05]

c) The diagram below shows a galvanic cell operating under standard conditions. The cell reaction taking place when the cell is functioning is:

 $6C\ell^{\text{-}}(aq) + 2Au^{3+}(aq) \rightarrow 3C\ell_2(g) + 2Au(s)$

With switch is open, the initial reading on the voltmeter is 0.14 V.

Write down the:

JVVII CI		[01]
i.	NAME or FORMULA of the oxidising agent	[02]
ii.	Half-reaction which takes place at the anode	[02]
iii.	Cell notation for this cell	[03]
iv.	Calculate the standard reduction potential of Au. Switch S is now closed and the bulb lights up. How will the reading on the	ne
v.	Switch S is now closed and the built lights up. He will be volumeter now compare to the INITIAL reading of 0,14 V?. Give a reason volumeter now compare to the INITIAL reading of 0,14 V?.	n for the [02]
	answer.	-

Question four (20 Marks)

- a) Calculate the Gibb's free energy in Joules for a Zn/Cu cell whose standard cell potiential is +1.10V. Explain this cell is spontaneous?
- b) Use the standard reduction potentials below to calculate the equilibrium constant for the following reaction at 25°C.

$$3I_{2(s)} + 2AI_{(s)} \rightarrow 6I^{-}_{(aq)} + 2AI^{3+}_{(aq)}$$

 $I_{2(s)} + 2e^{-} \rightarrow 2I_{-(aq)} \quad Eo = +0.54V.....(i)$
 $AI^{3+}_{(aq)} + 3e^{-} \rightarrow AI_{-(s)} \quad Eo = -1.66V.....(ii)$

c) A concentration cell is made using two Zn half cells, one with $[Zn^{2+}_{(aq)}] = 0.1M$ and the other $[Zn^{2+}_{(aq)}] = 1.0M$. if

 $Zn^{2+}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)} Eo = -0.76V,$

Calculate the potential developed across the terminals of this cell.

Comment on the cell potential when the two half cells have the same concentration. [04]

d)

- Differentiate the following terms; Resistivity and Conductivity [02] i.
- Calculate the resistance of a 12m copper wire whose diiametre is 0.01m [02]
- $(g_{cu} = 1.68 \times 10^{-8} \text{m})$ [03]e) Differentiate between metallic conduction and electrolytic conduction.

f) The resistance of a conductivity cell filled with 0.1mol.L⁻¹ KCl is 100Ω. If the resistance of the same cell when filled with 0.02mol.L⁻¹ solution is 520Ω. Calculate conductivity and molar conductivity of the 0.02mol.L⁻¹ KCl solution. The resistivity (g) of 0.1mol.L⁻¹ KCl solution is 1.29sm⁻¹.

Question five (20 Marks)

a)	What is Potentiometric Titration?	[02]
b)	Explain the principle in Potentiometric titration.	[02]
c)	Describe the method of Potentiometric titration.	[04]
d)	Name FOUR types of Potentiometric titrations. Give a brief description of each	of these
	types of titration.	[04]
e)	What is the main advantage of potentiometric titration?	[02]
f)	How do you determine the endpoint of this titration?	[02]
g)	Mention one use of quinhydrone?	[02]
h)	Which electrode is used as a reference electrode?	[02]