

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

STA 443

COURSE TITLE:

PROBABILITY AND MEASURE

DATE:

15/7/2021

TIME: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over

QUESTION ONE (30 MARKS)

- 1. (a) Define the following terms
 - (1 mk)
 - i. Probability space (1 mk) ii. Probability measure (1 mk)
 - iii. Sigma-algebra (1 mk)
 - iv. Measurable space
 - (b) Suppose that $A, B \in \mathcal{A}$. Show that $\mu(B) = \mu(A \cap B) + \mu(B \cap A')$
 - (c) Let $\{F_i \subset \mathbb{R}^n : i \in \mathbb{N}\}$ is countable collection of \mathbb{R}^n . Show that

$$\sum_{i=1}^{\infty} \mu^*(F_i) \ge \mu^*(\cup_i^{\infty} F_i)$$

(4 mks)

- (2 mks) (d) State two properties of probability measure
- (e) Let $0 \leq f_n \to f$ almost everywhere and $\int f_n d\mu \leq A < \infty$, show that f is integrable and $\int f d\mu \leq A$
- (f) Let X and Y be independent random variables. Show that

$$E[X|Y=y]=E[X]$$

(4 mks)

(g) Find the integral $f(x,y) = x^2 + y^2$, on the domain

$$D = \left\{ (x, y) \in R^2 : 0 < x < 2, x^2 < y < x \right\}$$

(3 mks)

- (h) Suppose (X, δ, μ) is a measure space and f and g are measurable functions on X and $A, B \in \delta$. State three properties of f and g.
 - (i) Prove that if $\mu^*(A) = 0$ then for each B, $\mu^*(A \cup B) = \mu^*(B)$

QUESTION TWO (20 MARKS)

2. (a) Let μ be a δ -finite measure on an algebra $\mathcal A$ of subsets of ω . Show that:

i. there exists an increasing sequence (5 mks)

ii. there exists a disjoint δ -finite sequence (5 mks)

(b) Suppose $\{B_n\}$ is sequence of independent events and $\sum_n P\{B_n\} = \infty$. Show the probability that B_n occurs infinitely often is one. (10 mks)

QUESTION THREE (20 MARKS)

- 3. (a) Let f_1 and f_2 be measurable functions on a common domain. Show that each set $\{\omega: f_1(\omega) < f_2(\omega)\}$, $\{\omega: f_1(\omega) = f_2(\omega)\}$ and $\{\omega: f_1(\omega) > f_2(\omega)\}$ is measurable (8 mks)
 - (b) Suppose $f = \sum_{i} x_{i} I_{Ai}$ is a non negative simple function, $\{A_{i}\}$ being decomposition of S into F sets, show that

$$\int f d\mu = \sum_i x_i \mu(A_i)$$

(6 mks)

(c) Let $P, q, r \in [1, \infty]$ satisfy $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Prove that for all measurable f and g defined on a space (X, \mathcal{A}, μ) , we haven $||fg||_r \leq ||f||_p ||g||_q$ (6 mks)

QUESTION FOUR (20 MARKS)

- 4. (a) What are Lebesgue measurable sets? (2 mks)
 - (b) Describe any two Lebesgue measurable sets (4 mks)
 - (c) State and explain any four measurable functions (8 mks)
 - (d) Show that if $\{f_n\}$ is a sequence of non-negative measurable functions, and $\{f_n(x): n \leq 1\}$ increases monotonically to f(x) for each x then

 $\lim_{n \to \infty} \int_{E} f_{n}(x) dm = \int_{E} f dm$ (6 mks)

QUESTION FIVE (20 MARKS)

- (a) State and explain two properties of conditional expectation (4 mks)
 - (b) Find the mathematical expectation of a random variable with:
 - i. uniform distribution over the interval [a,b]
 - ii. triangle distribution
 - iii. exponential distribution (6 mks)
 - (c) Let $f_n \ge 0$ be a measurable function. Show that $\int_x \liminf f_n d\mu \le \liminf \int_x f_n d\mu$ as $n \to \infty$ (10 mks)