

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAP 221/MAT 202

COURSE TITLE: LINEAR ALGEBRA II

DATE:

05/02/2021

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) State and prove the **three** properties of a Euclidean space (6 marks)
- b) Let u = (2,-1,1) and v = (1,1,2). Find < u,v> and the angle between these vectors. (3 marks)
- c) Show that the usual basis of Euclidean space IR^3 : $E=\{e_1=(0,1,0), e_2=(1,0,0) \text{ and } e_3=(0,0,1)\}$ form an orthornormal set in IR^3 with the Euclidean inner product. (9 marks)
- d) Let $F:IR^3 \rightarrow IR^3$ be defined by F(x,y,z) = (2x-3y+4z, 5x-y+2z, 4x+7y). Find the matrix of F relative to the standard basis of IR^3 E = $\{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ (10 marks)
- e) Find the eigen values of the following characteristic of a matrix

$$\begin{vmatrix} \lambda + 2 & 1 \\ -5 & \lambda - 2 \end{vmatrix} = 0$$
 (2 marks)

QUESTION TWO (20 MARKS)

- a) Given a vector $\mathbf{v} = (a, b, c,)$ in IR^3
 - i) Show that $\cos \alpha = \underline{a}$

 $\|\mathbf{v}\|$ (2 marks)

- ii) Find $\cos \beta$ (2 marks)
- iii) Find $\cos \gamma$ (2 marks)
- iv) Show that $\underline{\mathbf{v}} = (\cos \alpha, \cos \beta, \cos \gamma)$ (2 marks)
- $||\mathbf{v}||$ v) Show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ (2 marks)
- b) Let V be a vector space, $\mathbf{u} \in V$ and α is a scalar. Prove that the following properties hold.
 - i) $0\mathbf{u} = 0$ (2 marks)
 - ii) $\alpha 0 = 0$ (2 marks)
 - $\begin{array}{ll}
 \text{iii)} & \text{(2 marks)} \\
 \text{(4 marks)}
 \end{array}$
 - iv) If $\alpha \mathbf{u} = 0$ then $\alpha = 0$ or $\mathbf{u} = 0$ (4 marks)

QUESTION THREE (20 MARKS)

- a) Let $\mathbf{u} = (1, 2, 3)$, $\mathbf{v} = (2, -3, 1)$ and $\mathbf{w} = (3, 2, -1)$
- i) Find the components of the vector \mathbf{u} -3 \mathbf{u} +8 \mathbf{w} (2 marks)
- ii) Find the scalars c_1 , c_2 , c_3 such that $c_1\mathbf{u} + c_2\mathbf{v} + c_3\mathbf{w} = (6, 14, -2)$ (6 marks)

b) Let $\mathbf{u} = (2,-1, 1)$, $\mathbf{v} = (1, 1, 2)$. Find $\langle \mathbf{u}, \mathbf{v} \rangle$ and the angle between these two vectors.

QUESTION FOUR (20 MARKS)

a) Given that $\mathbf{u} = (2,-1,3)$ and $\mathbf{w} = (4,-1,2)$, find

(5 marks)

 \mathbf{u}_1 , the projection of \mathbf{u} onto \mathbf{w}

(3 marks)

 \mathbf{u}_2 , the perpendicular vector to \mathbf{w} b) Given that $\mathbf{u} = (2,-1,1)$ and $\mathbf{v} = (1,1,-1)$, show that \mathbf{u} and \mathbf{v} are orthogonal. ii)

(2 marks)

c) If $\mathbf{u} = (1,2,-2)$ and $\mathbf{v} = (3,0,1)$ find the cross product $\mathbf{u} \times \mathbf{v}$

(5 marks)

d) Let $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$. Show that $\langle \mathbf{u}, \mathbf{u} \times \mathbf{v} \rangle$ and $\langle \mathbf{v}, \mathbf{u} \times \mathbf{v} \rangle = 0$ and hence $\mathbf{u} \times \mathbf{v}$ \mathbf{v} is orthogonal to both \mathbf{u} and \mathbf{v} .

QUESTION FIVE (20 MARKS)

a) Find the quadratic form of A given that

 $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

(5 marks)

b) Show that $A = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 9 & 0 \end{bmatrix}$ is a positive matrix

(5 marks)

c) Find the co-ordinates of an arbitrary vector (a, b) in IR² with respect to the basis

 $s_1 = \{ u_1 = (1,-2), u_2 = (3,-4) \}$ $S_2 = \{v_1 = (1,3), v_2 = (3,8)\}$

(10 marks)