

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
SECOND YEAR SECOND SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAA 221/MAT222

COURSE TITLE:

CALCULUS III

DATE:

05/02/2021

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Use the 1st principles to determine $\frac{\partial z}{\partial y}$ given that $z = xy^2 2yx^2 3y^3$ (4 mks)
- b) Given that f(x, y) = xy 2x is the production function of a certain firm. Maximize the this function subject to budget constraint x + 3y = -4 (5 mks)
- c) Find the radius and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-6)^n (x-3)^n}{n 3^{n+1}}$ (5 mks)
- d) Find the volume in the 1st octant between the planes z = 0, and z = x + 2y 4And inside the cylinder $x^2 + y^2 = 36$ (5 m/s)
- e) An open cylinder has a surface area of 122.34 cm² Find the radius and the height that will yield maximum volume (6 mks)
- f) Verify that the Taylor series expansion for the function f(x) = cos x about x = 0 is $cos x = \sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n}}{(2n)!}$ hence find the Maclaurin series for f(x) = 2x cos x (5 mks)

QUESTION TWO (20 MARKS)

a) If $V = \{x, y \mid 0 \le x \le 2, \ 0 \le y \le \frac{\pi}{2} \text{ and } 0 \le z \le \frac{\pi}{2} \}$ evaluate $\iiint_V 3x \cos y \sin z dV$

(3 mks)

- b) Let $z = e^{-3x}secy$ and $x = s^2t^2 4s$ and $y = 2t^3 s$ find
 - (i) $\frac{\partial z}{\partial t}$ (4 mks)
 - (ii) $\frac{\partial z}{\partial s}$ (3 mks)
- c) Consider the series $1 + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{7}} + \cdots$ using the integral test, determine whether the series converges or diverges (5 mks)
- d) Find the volume of the solid bounded by the graphs of $z = 4 x^2$, y + z = 2, y = 0, and z = 0 (5 mks)

QUESTION THREE (20 MARKS)

- a) Consider the series $\sum_{n=0}^{\infty} \frac{1}{3n}$ use ratio theorem to show that the series converges (3 mks)
- b) Find the area of the portion of the cone $x^2 + z^2 = 3y^2$ lying above the yz-plane and inside the cylinder $x^2 + z^2 = 2z$ (6 mks)
- c) Given that z is a differentiable function near each (x, y) for $xz^2 + x^2 = 4y e^{-2y} \sin 2z$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ (6 mks)
- d) For what values does the series converge $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ (5 mks)

QUESTION FOUR (20 MARKS)

- a) Let $f(x, y, z) = xtan(yz) \frac{x^2}{z+x} + 3\ln(xyz)$. Find (i) f_{xx} (3 mks)
 - (ii) f_{xyz} (2 mks)
- b) Evaluate $\lim_{(x,y)\to(2,2)} \frac{xy-x^2}{\sqrt{x}-\sqrt{y}}$ (4 mks)
- c) A particle moves in a circular motion such that its position is given by x = 2sint and y = cos3t for any time t. A force of magnitude $f(x,y) = \frac{2}{3}x^2 4y^2 xy$ is exerted on the particle at a point (x,y). Find an expression for the rate of change of magnitude of the force exerted by the particle with respect to time when t = 1 (5 mks)
- d) Locate any relative extreme points and determine their nature for the function $f(x, y, z) = x y^2 4xy 2xz + 5z^2$ (6 mks)

QUESTION FIVE (20 MARKS)

- a) Use the Lagrange multipliers to find the local extrema of the function $f(x,y) = x^3 2y^2$ Subject to $x^2 + y^2 = 4$ (7 mks)
- b) Locate and classify all critical points of $f(x, y, z) = x 4xy y^2 + 5z^2 2yz$ (7 mks)
- c) Investigate the convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{k+1}(k+1)!}{e^{k+1}}$ (6 mks)