

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE:

MAT 827

COURSE TITLE:

CODING THEORY I

DATE:

18/02/2021

TIME: 2 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

MAT 843 CODING THEORY

Question One, (20 mks)

- a) Define the Hamming code Ham(n,r) (3mks)
- b) State without proof the distance theorem for Linear codes (3 mks)
- c) Use the distance theorem to find the minimum distance of the binary code with check matrix. (3 mks)

$$H = \left[\begin{array}{ccccccc} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]$$

- d) Generate a (7,4) Hamming code for the Message 1000, (3 mks)
- e) A 7 bit Hamming codeword is received as 1010111. Assuming even parity determine whether the received word is wrong or correct and if wrong find the correct codeword. (4mks)
- f) Find the generator matrix for Ham(3,2). (4 mks)

Question Two, (20 mks)

- a) Define the following terms
 - (i) A Linear code (2 mks)
 - (ii) The minimum weight of a code (2 mks)
 - (iii) The minimum distance of a code (2 mks)
 - (iv) Define a dual of a code C (2 mks)
- b) Show that, for a Linear code C, the minimum distance and the Hamming weight are the same (3 mks)
- c) Given a code $C = \langle S \rangle$ where S = 11101, 10110, 01011, 11010. find the basis of this code and the generator matrix of the dual code C^{\perp} . (5 mks)
- d) List all the codewords of the above code C. If this code is used for error detection in a binary symmetric channel with bit error rate p = 0.1, calculate $P_{undetect}(C)$, the probability that an error in a recieved vector is not detected. Leave your answer in unsimplified form (3 mks)
- e) What is meant by a syndrome of a code (1 mks)

Question Three (20 mks)

- a) Define what is meant by an Ideal I in a commutative ring R (3 mks)
- b) Define what is meant by a cyclic code C in $F_p^{(n)}$ (3 mks)
- c) Show that a set S in R_n corresponds to a cyclic code. (5 mks)
- d) iven that over F_2 ,

$$x^7 = (x-1)(x^3 + x + 1)(x^3 + x^2 + 1)$$

as a product of irreducible polynomials: Construct binary cyclic codes for $n=7.\ (5\ mks)$

e) Write down the parity check polynomial of the binary cyclic code generated by $1 + x + x^3$ (4 mks)

Question Four (20 mks)

a) Let C be a binary Linear code given by the generator matrix.

$$G = \left[\begin{array}{rrrr} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array} \right]$$

- i) Determine all the code words of C. What can you say about the error detection and correlation ability. (4 mks)
- ii) Find the associated parity check matrix H. (3 mks)
- iii) Use H to decode the following received words. 11011 and 11010 (mks)
- b) A binary sequence code has probability P=0.05 of incorrect transmission. If the code word C=011011101 is transmitted, without simplfying your answer, what is the probability that,
 - i) We receive r = 1110111100 (2 mks)
 - ii) A double error occurs (3 mks)
- c) Prove that a code C of minimum distance d can detect up to t errors in any code word and correct up to t errors in any code word if $d \ge 2t 1$ (4 mks)

Question Five (20 mks)

- a) Define a BCH code. (3 mks)
- b) Construct a triple error correcting BCH code with block ength n=31 over $GF(2^5)$ (10 mks)
- c) Define a Boolean function (1 mks)
- d) Define a Reed-Muller code R(r, m) (3 mks)
- e) Find a generator matrix for R(1,3) (3 mks)