

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

THIRD YEAR SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

MAT 307

COURSE TITLE: NUMBER THEORY

DATE:

01/02/2021

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (Compulsory)

a) Find the Remainder when 6¹⁹⁸⁷ is divided by 37

(5 marks)

b) Prove that $\log_{10} 7$ is irrational.

- (5 marks)
- c) Find all the solutions in integers to 3456x + 246y = 234. (5 marks)
- d) Show that \mathbb{Z}_3 form a group of residues under addition modulo 3. (5 marks)
- e) State the five properties of Congruences. (5 marks)
- f) State the well-ordering axiom and use it to show that there is no integer between 0 and 1.

(5 marks)

QUESTION TWO

- a) Show that the set $A = \{-40,6,7,15,22,35\}$ forms a complete residue set $mod\ 6$ while the set $B = \{-3,-2,-1,1,2,3\}$ $mod\ 6$ does not. (10 marks)
- b) Show that $n^2 23$ is divisible by 24 for infinitely many n . (5 marks)
- c) State the Euclidean Algorithm process of finding greatest common divisor and use it to find the greatest common divisor 560 and 600. (5 marks)

QUESTION THREE

- a) State and prove the Wilson's theorem. (8 marks)
- b) Prove that $n^4 + 4$ is prime only when n = 1 for all $n \in \mathbb{N}$ (6 marks)

c) Prove that the product of n consecutive integers is divisible by n! and hence show that (6 marks) $n^5 - 5n^3 + 4n$ is always divisible by 120.

QUESTION FOUR

a) State and prove the Euler's theorem. Use the theorem to find the last two digits of 3¹⁰⁰⁰ (10 marks)

b) Prove by induction that
$$\sum_{t=1}^{n-1} t(t+1) = \frac{n(n-1)(n+1)}{3}$$
, for all natural numbers $n \ge 2$

(5 marks)

(5 marks)

(5 marks) c) Solve the congruence $50x \equiv 12 \mod 14$

QUESTION FIVE

a) Solve the congruence $3x^2 + 3x + 2 = 0 \pmod{10}$.	(6 marks)
---	-----------

b) Prove that 7 divides
$$3^{2n+1} + 2^{n+2}$$
 for all natural numbers n (5 marks)

c) Find x such that
$$x \equiv 3 \mod 5$$
 and $x \equiv 7 \mod 11$ (5 marks)

d) Prove by induction
$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
 (4 marks)