

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAT 423

COURSE TITLE: ORDINARY DIFFERENTIAL EQUATION II

DATE: 22/07/2021

TIME: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) Determine the stability of the system
$$x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} x$$
 (5 marks)

b) Show that there exist a unique solution to the differential equation

$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0$$
, hence find the unique solution. (7 marks)

c) Linearize the system and find the critical points.

$$X' = \begin{bmatrix} x_1^2 - x_2^2 - 1 \\ 2x_2 \end{bmatrix} x \tag{6 marks}$$

d) solve the following system of differential equations

$$X' = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (8 marks)

e) State the condition for the following critical points to occur and in each case draw the phase portrait

i) Node.

(2 marks)

ii) Saddle point.

(2 marks)

QUESTION TWO (20 MARKS)

a) Find the general solution of the system
$$X' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} x$$
 (6 marks)

b) Determine the respective fundamental matrix x(t) given that $x(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (11 marks)

c) Hence find
$$e^{\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} t}$$
 (3 marks)

QUESTION THREE (20 MARKS)

a) Define a linear system of differential equation.

(1 mark)

b) Use matrix method to solve the non-homogenous system of equations

(19 marks)

$$\frac{dx_t}{dt} = x_2 + e^{t}$$

$$\frac{dx_2}{dt} = 3x_2 - 2x_1 + 1$$

QUESTION FOUR (20 MARKS)

a) Use elimination method to solve the system

(12 marks)

$$\frac{dy}{dt} + 2y + 3x = 2e^{t}$$

$$\frac{dx}{dt} + 3y + 2x = 0$$

Use Picards method to approximate y and z corresponding to x = 0.1 for the b)

particular solution of

$$\frac{dy}{dx} = f(x, y, z) = x + z$$
$$\frac{dz}{dx} = g(x, y, z) = x - y^{2}$$

Satisfying y=2, z=1 when x=0.

$$\frac{dz}{dx} = g(x, y, z) = x - y^2$$

(8 marks)

QUESTION FIVE (20 MARKS)

- c) Define a node of a linear autonomous system. (3 marks)
- d) Determine the nature of the critical point (0,0) of the system

$$\frac{dx}{dt} = 2x + 4y$$

$$\frac{dy}{dt} = -2x + 6y$$

And find out whether or not the point is stable. (6 marks)

e) Determine whether or not the solution of the differential equation below is a asymptotically stable or unstable.

$$X' = \begin{pmatrix} -1 & 0 & 0 \\ -2 & -1 & 2 \\ -3 & -2 & -1 \end{pmatrix} x$$
 (5 marks)

f) Find the nature of the critical point (0,0) of the non-linear system

$$\frac{dx}{dt} = x + 4y - x^{2}$$

$$\frac{dy}{dt} = 6x - y + xy$$
(6 marks)