

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAP 311

COURSE TITLE: REAL ANALYSIS II

DATE: 12/7/2021

TIME: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over

QUESTION ONE (30 MARKS)

ł	 Define the following: (i) Metric space. (ii) Limit. (iii) Total Boundedness. (iv) Sequential compactness. (v) Relatively compact sets. Suppose (X, d) is a metric space. Show that closed subsets of compact met compact. Show that for every x ∈ X and r >0 the open ball B(x, r) in a metric space 	(7mortes)
	QUESTION TWO (20 MARKS)	
a b	 (i) Continous function. (ii) Uniform continuity.) Show that for every nonempty set A ⊆ X the map X→ R, x→(x, A), is con (6 marks) 	
a) b)	theorem (2 marks)	(4 marks) (2 marks) (5 marks) (4 marks) (10 marks).
a) b)	QUESTION FOUR (20 MARKS) Show that if U is a subset of a metric space (X, d) , then $x \in U$ if and only if sequence (x_n) in U such that $x_n \to x$ and $n \to \infty$. Show that if (x_n) is a sequence in a metric space (X, d) and $x_0 \in x$, then tha statements are equivalent: (1) Limit $x_n = x_0$ $n \to \infty$	there exists a (10 marks) t following
	(2) For every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_0) < \varepsilon$ for all $n \ge 1$	n_0 .

(10 marks)

QUESTION FIVE (20 MARKS)

a)	Define	the terms:	
	(i)	Open and closed ball.	(4 marks)
	(ii)	Accumulation points.	(3 marks)
	(iii)	Relatively compact sets.	(1mark)
	(iv)	Distance to a set.	(2 marks)
b)	Let (X	, d) be a metric space.	*
	(i)	Show that arbitrary union of open sets are open.	(5 marks)
	(ii)	Show that intersections of open sets are open.	(5 marks)