

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: MAA 315

COURSE TITLE: ANALYTIC APPLIED MATHEMATICS 1

DATE: 13/7/2021 **TIME:** 9:00 - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

(a) Given the ordinary differential equation (ODE)

$$3x\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

- i). Find the singular point for the ordinary differential equation. Hence show that the ODE can be solved using Frobenius method.
- ii). Using the Frobenius method, obtain the indicial equation for the ODE (4 marks)
- iii). Determine the recursion relation for the ODE (3 marks)
- iv). Develop a power series solution for the ODE (3 marks)
- (b) Find the Laplace transform of the function $f(t) = e^{at}$, where a is a constant. (5 marks)
 (c) Determine the Legendre's polynomial P_t using Rodrigues formula. (4 marks)
- (c). Determine the Legendre's polynomial P_1 using Rodrigues formula. (4 mar (d). given the partial differential equation, $z = 5x^4 + 2x^3y^2 3y$, evaluate $\frac{\partial^2 z}{\partial x^2}$ and $\frac{\partial z}{\partial y}$
- (d). given the partial differential equation, $z = 5x^4 + 2x^2y^2 5y$, evaluate $\frac{\partial}{\partial x^2}$ and $\frac{\partial}{\partial y}$ when x = 2 (4 ma)
- (e). Show that the function $f(x) = x x^3$ in the interval $-\pi \le x \le \pi$ is an even function (3 marks)

QUESTION TWO (20 MARKS)

(a) Use Laplace transforms to solve the second order ordinary differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0, \quad y(0) = 2, \quad y'(0) = 2$$

(7 marks)

(b) The gamma function is given by the integral

$$\Gamma(x) = \int_0^\infty (t^{x-1} e^{-t}) dt, \ x > 0.$$

Show that $\Gamma(x+1) = x\Gamma(x)$

(4 marks)

- (c) Find the constant a_0 of the Fourier series for the function $f(x) = e^x \operatorname{in} -\pi < x < \pi$ (3 marks)
- (d) If $z = (\frac{x}{y}) \ln y$,

(i). Show that $\frac{\partial z}{\partial y} = x \frac{\partial^2 z}{\partial y \partial x}$

(3 marks)

(ii). Evaluate $\frac{\partial^2 z}{\partial y^2}$ when x = 3 and y = 1

(3 marks)