

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

SUPPLEMENTARY/SPECIAL EXAMINATIONS YEAR ONE SEMESTER ONE EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY

COURSE CODE

: BIT 115

COURSE TITLE

: BASIC ELECTRONICS FOR IT

P2

DATE: 04/10/2018

TIME: 8.00A.M - 10.00A.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION ONE (COMPULSARY) [30 MARKS]

a)	De	fine the following terms				[1 marks]	
	i)	Electric current				[1 marks]	
	ii)	Potential difference	en connected acros	s a 110V supply.			
b)	Tv	ii) Potential difference Two filament lamps A and B take 0.8A and 0.9A respectively, when connected Calculate the value of current when they are connected in series across a 220V				y. (assume the	
	Calculate the value of current when they are connected			Il series deross w == 1		[4 marks]	
	fil	ilament resistance remains the same)			taken :	_	
c)	A	A factory has a 240-V supply from which the following loads are taken:					
	Lighting: Three hundred 150-W, four hundred 100 W and five hundred 60-W lamps						
		Heating: 100 kW					
		Motors: A total of 44.76 kW					
	Miscellaneous: Various load taking a current of 40 A. Assuming that the lighting load is on for a period of 4 hours/day, the heating for 10 hours per day an						
	a ol Hay						
	the remainder for 2 hours/day,i) Determine the weekly consumption of the factory in kWh when working of				[4 marks]		
Ċ	1)	Determine capacitance that must be connected in series with a 30 µF capacitor for			[2 marks]		
		execitance to be 12 uF				[3 marks]	
(e)	Explain any three advantages of digital systems have over analog systems. Discuss the effect of temperature on good conductors.				[3 marks]	
	0					[3 marks]	
	g)	Describe the behaviour of a pn junction under for	rward and	reve	rse biasing.	[1 marks]	
	h)	State any two advantages of full-wave bridge rec	etitier			[2 marks]	
	i)	Explain the applications of the following classes	of transis	tors.		[2 marks]	
	-)	i) Low-noise ii)	Switch			[3 marks]	
	j)	Convert the binary number 1010 1011.01111 ₂ to);			[5 marks]	
	3/	i) Hexadecimal	i	i)	Decimal	[3 marks]	
	k)	Convert hexadecimal number A25C. 2A _H				[3 marks]	
	11)	i) Binary	ii) Octal		ctal		
		-,					

QUESTION TWO [20 MARKS]

a) Name the three possible transistor connections.

[3 marks]

b) In a common base connection, the emitter current is 1mA. If the emitter circuit is open, the collector current is 50 μ A. Find the total collector current. Given that $\alpha = 0.92$.

[2 marks]

c) Draw a well labeled common collector NPN transistor test circuit for the various transistor

[3 marks] characteristics

d) Sketch and explain the following characteristics for the test circuit of 2 c) above

i) Input characteristic

[3 marks]

ii) Output characteristic

[3 marks]

e) Explain the construction and working of a *JFET*

[3 marks]

f) Describe the operation CE transistor connection as an amplifier

[3 marks]

QUESTION THREE [20 MARKS]

a) Define the following terms

i) Circuit

[1 mark]

ii) Electric network

[1 mark]

- b) A current of 3A flows through a circuit for 2 minutes. Determine the number of electrons that flow at a point in the circuit ($1e = 1.6 \times 10^{-19} \text{ C}$) [3 marks]
- c) For the circuit shown in Figure below, find, using the Kirchhoff's law;

i) Current that flows through the 20Ω branch.

[5 marks]

ii) Power dissipated by the 6Ω branch

[3 marks]

d) A circuit consisting of two capacitors P and Q in parallel, connected in series with another capacitor R. the capacitances o P, Q and R are 4μF, 12μF and 8μF respectively. When the circuit is connected across a 300V d.c supply determine;

i) The total capacitance of the circuit

[2 marks]

ii) The p.d across each capacitor

[3 marks]

iii) The charge on each capacitor

[2 marks]

QUESTION FOUR [20 MARKS]

- a) Write short notes on the following:
 - i) Peak inverse voltage

[2 marks]

ii) Breakdown voltage

[2 marks]

b) The figure below shows the short circuit failures in a transistor. What will be the circuit behavior in each case?

[6 marks]

c) A battery having an E.M.F of E volts and internal resistance 0.2 Ω is connected across terminals A and B of the circuit

Given that the power dissipated at the 3Ω resistor is 2.25W calculate the value of E. [5 marks]

d) Explain briefly any Four factors that affect resistance of a material, hence derive the for specific resistance of a material
 [5marks]

QUESTION FIVE [20 MARKS]

- a) For the arrangement shown in the Figure below Calculate;
 - i) The equivalent capacitance of the circuit,

[3 marks]

ii) The voltage across QR, and

[3 marks]

iii) The charge on each capacitor...

[2 marks]

b) A capacitor is charged with 8 mC. If the energy stored is 0.4. Determine;

i) The voltage and

[3 marks]

ii) The capacitance.

[3 marks]

c) Describe the following types of capacitors

i) Variable air capacitor

[2 marks]

ii) Paper capacitor

[2 marks]

d) State one application for each case in 4 (c) above.

[2 marks]