

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR TWO SEMESTER TWO EXAMINATIONS

FOR THE DEGREE OF (COMPUTER SCIENCE)

COURSE CODE: CSC 220

COURSE TITLE: AUTOMATA THEORY

DATE: 05/10/2021 TIME: 02.00 P.M - 04.00 P.M

INSTRUCTIONS

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (COMPULSORY) [30 MARKS]

a) Define the following terms as used in automata theory.

[2Mks]

String i.

ii. Automata

b) Describe two categories of Finite Automaton.

[4Mks]

c) Explain two conditions that must be satisfied for a string to be accepted by DFA/NDFA.

[4Mks]

d) Generate the transition table for the following Automaton.

[6Mks]

e) Convert the following NDFA to DFA?

[6Mks]

f) Minimize the following DFA using Equivalence Theorem showing tables after each step. [8Mks]

QUESTION TWO [20 MARKS]

- a) Define the following terms.
 - i) Moore Machine
 - ii) Transducer
- b) Differentiate Mealy Machine from Moore Machine.
- c) Convert the following Moore Machine to Mealy Machine.

[2Mks]

[6Mks] [6Mks]

d) Given Grammar derive String aaabbb

show how you can [4Mks]

G: $(\{S, A, B\}, \{a, b\}, S, \{S \rightarrow aS \mid B, B \rightarrow b \mid bB\})$

QUESTION THREE [20 MARKS]

- a) Describe the following terms as used in Automata Theory. [2Mks]
 - a. Arden's Theorem
 - b. DFA Complement
- b) Give Regular Set generated by the following Regular Expression.

[4Mks]

- i) (aa)*(bb)*b
- ii) (aa+ab+ba+bb)*
- c) Using Pumping Lemma, show that language $L=\{a^{3x}b^{2y}/x>y>0\}$ is not Regular. [6Mks]
- d) Construct a Finite Automaton from the following Regular Expression. [4Mks]

11*0(00+1)*01(10)*

e) Find the complement of the following DFA.

[4Mks]

QUESTION FOUR [20 MARKS]

a) Explain the following terms as used in Automata Theory.

[4Mks]

- i) Parse Tree
- ii) Yield of a Parse Tree
- b) Let any set of production rules in a CFG S→0S1S/1S0S/ε, generate Leftmost derivation of 0 1 0 1 and draw equivalent derivation tree. [6Mks]
- c) Find a reduced grammar equivalent to the grammar G, having production rules P: S→aB,

A→aaA/abBc, B→aA/b

[6Mks]

d) Convert the following productions of CFG to Chomsky Normal Form. [4Mks]

S→aXbX

 $X \rightarrow aY|bY|\epsilon$

 $Y \rightarrow X|_{\mathbb{C}}$

QUESTION FIVE [20 MARKS]

- a) Draw notation of a Turing Machine. [2Mks]
- b) i. Design a Turing Machine to accept the set of all palindrome over {0,1}*. [5Mks]
 - ii. Draw a transition diagram for the Turing Machine of the above. [5Mks]
- c) Construct a PDA that accepts the languages by empty stack $\{a^n b^{2n}/n \ge 1\}$. [8Mks]