

(KNOWLEDGE FOR DEVELOPMENT)

KIBABII UNIVERSITY (KIBU)

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATIONS FIRS YEAR SECOND SEMESTER

FOR THE DEGREE IN
(INFORMATION TECHNOLOGY)

COURSE CODE: BIT 115

COURSE TITLE: BASIC ELECTRONICS

DATE: 29/09/2021 TIME: 8.00 A.M-10.00 A.M

INSTRUCTIONS

ANSWER QUESTIONS ONE AND ANY OTHER TWO

QUESTION ONE (COMPULSORY) [30 MARKS]

(a) A resistor R of 2000 ohms, inductor L of 0.5 Henries and	Capacitor 0.5 Microfarads	a
connected in series and later in parallel for each case determine the impedance for		
frequency F	(6 marks)	
(b) Distinguish between active devices passive devices	(2 marks)	
(c) Explain any two application of a PN diode	(4 marks)	
(d) With aid of diagram describe the transistor action	(6 marks)	
(e) Explain the operation of the Operational Amplifier	(6 marks)	

QUESTION TWO [20 MARKS]

(f) Explain any two factors that explain bandwidth of an amplifier

- (a) A 8 k Ω resistor, a perfect 1.5 H inductor and a perfect 1.2 F capacitor are connected, in turn, across a 5 V, 5 kHz supply. For each case calculate the resulting current flow and sketch the relevant phasor diagram.
 (9 marks)
- (b) A pure inductor is connected across a 10 V, 400 Hz supply, and the current fl owing through it is measured as 0.2 A. Determine the value of its inductance. (3 marks)
- (c) A perfect capacitor is connected across a 12 V, 20 kHz supply, and the resulting current flow is 44 mA. Calculate the capacitance value. (3 marks)
- (d) A coil of wire is tested by connecting it, in turn, to a d.c. supply and then an a.c. supply. The results from these two tests are as follows: d.c. supply of 10 V; resulting current fl o w 1 m A a.c. supply of 10 V, 2000 Hz; resulting current fl o w 3 m A Using the results of these two tests, determine the resistance and inductance values for the coil.

(5 marks)

(2 marks)

QUESTION THREE [20 MARKS]

For the transistor amplifier shown in Fig. 1, R_1 = 40 k Ω , R_2 = 20 k Ω , R_C = 1 k Ω , R_E = 1 k Ω and R_L = 2 k Ω .

(i) Explain operation of the amplifier	(8 marks)
(ii) Draw d.c. load line	(4 marks)
(iii) Determine the operating point	(4 marks)
(iii) Draw a.c. load line.	(4 marks)

Assume $V_{BE} = 0.8 \text{ V}$.

Figure 1: Transistor amplifier

QUESTION FOUR [20 MARKS]

- (a) With aid of circuit diagram and waveform explain the operation of diode half wave rectifier (12 marks)
- (b) Calculate the voltage drop V_{DC} and current I_{DC} flowing through a 100Ω resistor connected to a 240 Vrms single phase half-wave rectifier as (a). Also calculate the average DC power consumed by the load. (8 marks)

QUESTION FIVE [20 MARKS]

- (a) With the aid of circuit diagrams derive the output expression of the OPAM used as an non Inverting amplifier (5 marks)
- (b) With the aid of circuit diagram explain the working of tuned collector oscillator (10 marks)
- (c) Derive the expression for voltage gain of an amplifier with negative feedback (5 marks)