

(KNOWLEDGE FOR DEVELOPMENT)

KIBABII UNIVERSITY (KIBU)

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATIONS FIRST YEAR FIRST SEMESTER

FOR THE DEGREE IN
(INFORMATION TECHNOLOGY/ COMPUTER
SCIENCE)

COURSE CODE:

BIT 111/CSC 112

COURSE TITLE:

DISCRETE STRUCTURES

DATE: 27/09/2021

TIME: 2.00 PM-4.00 P.M

INSTRUCTIONS

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

- **a.** List the elements of each set where $N = \{1, 2, 3, \ldots\}$
 - i. $A = \{x \in N \mid 3 \le x \le 9\}$

[1 mark]

ii. $B = \{x \in N \mid x \text{ is even, } x < 11\}$

[1 mark]

 $C = \{x \in N \mid 4 + x = 3\}$ iii.

[1 mark]

b. Given that set $A = \{x_1, x_2\}$ and set $B = \{y_1, y_2\}$. Define the cross product of A and B and show that Cartesian product is not commutative.

[3 marks]

- c. Let $U = \{1, 2, ..., 9\}$ be the universal set, and let $A = \{1, 2, 3, 4, 5\}$, $C = \{5, 6, 7, 8, 9\}$, $E = \{2, 4, 6, 8\}$,
- **d.** $B = \{4, 5, 6, 7\}, D = \{1, 3, 5, 7, 9\}$ and $F = \{1, 5, 9\}.$

Find:

i. $A \cup B$ and $A \cap B$ [2 marks]

 $A \cup C$ and $A \cap C$ ii.

[2 marks]

iii. $D \cup F$ and $D \cap F$. [2 marks]

e. Prove by the method of induction that for all neN then,

$$\frac{1}{3*5} + \frac{1}{5*7} + \frac{1}{7*9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

[4 marks]

f. Find the inverse (f^{-1}) of $f(x) = 4x^3 - 7$

[2 marks]

g. Find a counterexample for each statement were $U = \{3, 5, 7, 9\}$ is the universal set:

 $\forall x, x + 3 \ge 7$

[1 mark]

 $\forall X, |X| = X$

[1 mark]

- h. Let p be "It is cold" and let q be "It is raining". Give a simple verbal sentence which describes each of the following statements: p \(\text{q}; \, \text{q} \text{\sqrt} \) [2marks]
- i. Evaluate the following

i. $C_{(11,5)}$ [2 marks]

ii. Value of n if P (n, 2) = 72. [2 marks]

- A survey of 80 car owners shows that 24 own a foreign-made car and 60 own a domestic-made car. Find the number of them who own:
 - i. only a foreign made car;

[2 marks]

ii. only a domestic made car. [2 marks]

OUESTION TWO

[20 MARKS]

- a. i. Using Euclidean algorithm find the GCD and LCM of 1415 and 612. [4 marks] ii. Find the value of x and y in x(1415)+y(612)=gcd(1415,612). [4 marks]
- b. Suppose the only clothes you have are 2 t-shirts, 4 pairs of jeans and 6 pairs of shoes. In how many combinations you can choose a t-shirt, a pair of jeans and a pair of shoes? [4 marks]
- **c.** Prove using mathematical induction that:

1.2.3+2.3.4+3.4.5+...+ n (n+1) (n+2) =
$$\frac{n(n+1)(n+2)(n+3)}{4}$$

[4 marks]

- d. Let p denote "Henry eats halibut," q denote "Catherine eats kippers," and r denote "I'll eat my hat."
 - i. Write a proposition that reads "If Henry eats halibut but Catherine does not eat kippers, then I'll eat my hat."
 [2 marks]
- ii. Write the converse, inverse, and contrapositive of the statement "If Sally finishes her work, she will go to the basketball game." [2 marks]

QUESTION THREE

[20 MARKS]

a. Give the universal set U representing the set of English alphabets, A a set of distinct elements of the word "**crocodile**", B a set of distinct elements of the word "**continuous**" and C a set of distinct elements of the word "**myogenic**". Find:

i. A-C

[1 mark]

ii. (AUBUC)^c

[2 marks]

iii. AUB

[1 mark]

iv. AnB

[1 mark]

- **b.** Of 100 students in a university department, 45 are enrolled in English, 30 in History, 20 in Geography, 10 in at least two of three courses and just 1 student is enrolled in all three courses.
- i. Represent these information on a Venn diagram

[4 marks]

ii. How many students take none of these courses?

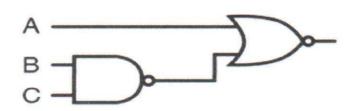
[2 marks]

c. In a class of 30 students, 10 got A on the first test, 9 got A on a second test, and 15 did not get an A on either test. Find: the number of students who got:

i. an A on both tests;

[2 marks]

ii. an A on the first test but not the second;


[2 marks]

iii. an A on the second test but not the first.

[2 marks]

d. State the output of the following circuit.

[3 marks]

QUESTION FOUR

[20 MARKS]

- a. Given sets A, B and C such that all are non-empty sets. State the inclusive-exclusive principle.
 [2 marks]
- **b.** Let $A = \{1, 2, 3, 4, 5\}$. Determine the truth value of each of the following statements:
 - i. $(\exists x \in A)(x + 3 = 10)$ (c) $(\exists x \in A)(x + 3 < 5)$

[2 marks]

ii. $(\forall x \in A)(x + 3 < 10) (d) (\forall x \in A)(x + 3 \le 7)$	[2 marks]
c. Determine the truth value of each of the following statements where $U = \{1, 2, 3\}$	is the universal
set:	[3 marks]
i. $\forall x \exists y, x2 + y2 < 12$	
ii. $\forall x \forall y, x2 + y2 < 12$	
d. Give the $f(x) = \frac{x+1}{x^2}$, $g(x) = 4x^2 + 7$ and $h(x) = \frac{x^2 - 1}{x+1}$ find:	
i. Domain and range of $f(x)$ and $h(x)$	[2 marks]
ii. The inverse $g^{-1}(x)$ of $g(x)$	[3 marks]
iii. Is $g(x)$ bijective? Explain.	[2 marks]
iv. $f(g(h(x)))$	[2 marks]
v. g(h(2))	[2 marks]
QUESTION FIVE	[20 MARKS]
a. Using relevant examples differentiate between a function and a relation.	[2 marks]
b. Let $A = \{2, 3, 4, 5\}$ and let $R = \{(2, 3), (3, 3), (4, 5), (5, 1)\}$. Is R symmetric,	asymmetric or
antisymmetric?	[2 marks]
c. Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$, and $C = \{x, y, z\}$. Consider the following rel	ations R and S
from A to B and from B to C, respectively. $R = \{(1, b), (2, a), (2, c)\}$ and $S = \{(1, b), (2, a), (2, c)\}$	
(c, y), (c, z)	(()) // //
(i) Find the composition relation R°S.	[2 marks]
(ii) Find the matrices MR, MS, and MR°S of the respective relations R, S, and	
compare MR·S to the product MRMS.	[2 marks]
compare wix's to the product wixivis.	[2 marks]
d. Let A, B, C and D be sets. Suppose R is a relation from A to B, S is a relation from B to C and T is a relation from C to D. Then show that $(R \circ S) \circ T = R \circ (S \circ T)$. Let R be the relation on N defined by $x + x = x + y = x + y = x + y = x = x + y = x = x + y = x = x + y = x = x + y = x = x + y = x = x = x = x = x = x = x = x = x =$	
$3y = 12$, i.e. $R = \{(x, y) x + 3y = 12\}$.	
i. Write R as a set of ordered pairs. (c) Find R-1.	[2 marks]
ii. Find the domain and range of R. (d) Find the composition relation R°R.	[2 marks]
ii. I find the dolitain and range of it. (a) I ma use composition composition	
e. A women student is to answer 10 out of 13 questions. Find the number of her choice	es where she must
answer:	[2 marks]
i. the first two questions	[2 marks]
ii. exactly 3 out of the first 5 questions	[2 marks]
iii. the first or second question but not both	[2 marks]
iv. at least 3 of the first 5 questions.	[2 marks]