

KIBABII UNIVERSITY (KIBU)

UNIVERSITY EXAMINATIONS **2020/2021 ACADEMIC YEAR**

END OF SEMESTER EXAMINATIONS YEAR THREE SEMESTER TWO EXAMINATIONS

FOR THE DEGREE OF (COMPUTER SCIENCE)

COURSE CODE: CSC 366E

COURSE TITLE:

SIMULATION AND MODELING

DATE: 14/10/2021

TIME: 02.00 P.M. - 04.00 P.M.

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (COMPULSORY) [30 MARKS]

What is system model? Discuss different system perspectives that can be represented model [2 marks] b. Give the TWO reasons for the steadily increasing interest in simulation applications [2 marks] Explain THREE situations you think simulation and modeling is an appropriate tool. [6 marks] d. Discuss the concept of system and system Environment as used in simulation and modeling. [4 marks] e. Explain the properties of random number and its consequences. [4 marks] Explain several entities, attributes, activities, events and state variables of a typical automatic f. teller machine (ATM). [5 marks] g. Describe Kendal-lee notation for queuing system. [3 marks] h. What is the meaning of the following representations in the context of a queuing system? i. D/M/1/LIFO/20/510 [2 marks] ii. M/M/8/15/LIFO [2 marks] QUESTION TWO [20 MARKS] Can a simulation model be verified but not valid and vice-versa? Explain with an example. [2 marks] Explain different classification of mathematical models with appropriate examples. [6 marks] Discuss any THREE techniques for verification of simulation computer programs and any THREE techniques you can apply in order to increasing model validity and credibility. [6 marks] d. You are in the process of validating simulated model. Discuss THREE step approach of validation process that you will apply based on Naylor and Finger [6 marks]

QUESTION THREE [20 MARKS]

- Explain the meaning of a queuing system and discuss the general elements/characteristics of a [6 marks] queuing system.
- b. Provide the detailed flow chart of a typical arrival event and departure event in a single channel [4 marks] queuing system.
- What are the various parameters used to measure the performance of a queuing systems?

[4 marks]

d. In a petrol pump, Customer arrival time is given by Poison distribution within arrival rate of 2 Customer/hr and they get exponentially served at the rate of 3 Customer/hr.

Find:

Find:		[1 mark]
i.	Server Busy Time	[1 mark]
ii.	Server Idle Time	[1 mark]
iii.	Average no of Customer in system	[1 mark]
iv.	Average time spent in system	[1 mark] [1 mark]
v.	Average waiting time	
vi.	Average no of customers in queue	

QUESTION FOUR [20 MARKS]

- [4 marks] Explain Important features (or concepts) that define a business system
- [2 marks] What is the necessity of differential equations in simulation?
- Discuss the FOUR principles used in modelling process. In each case provide a real life [4 marks] justification.
- d. Discuss the following methods used to analyze simulation results
 - [2 marks] i. Estimation Methods
 - [2 marks] ii. Simulation Run Statistics
 - [2 marks] iii. Replication of Runs
- e. Explain the role of financial modelling, Inter linked models and corporate modelling in a [3 marks] simulation study.

QUESTION FIVE [20 MARKS]

a. Explain briefly any THREE Pitfalls in simulation and modeling.

[3 marks]

b. Explain Montel Carlo simulation pointing out the important characteristics of this method.

[3 marks]

- c. Give definitions of a probability mass function of discrete random variable X and Joint probability mass function of two discrete random variables X and Y.[4 marks]
- **d.** Suppose that X is a discrete random variable with the probability mass function given by:

$$p(i) = \frac{i}{15}$$
, where $i = \{1, 2, 3, 4, 5\}$:

i. Plot p(x)

[2 marks]

ii. Compute and plot F(x)

[3 marks]

iii. Compute $P(1.9999 \le X \le 4.0001)$

[2 marks]

iv. Compute E(X) and Var(X).

[3 marks]