

(Knowledge for Development)

KIBABII UNIVERSITY

(KIBU)

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATION YEAR ONE SEMESTER ONE EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (INFORMATION TECHNOLOGY)

COURSE CODE

: BIT 114

COURSE TITLE

MATHEMATICS FOR IT

DATE: 29/01/2021

TIME: 8.00 A.M. - 10.00 A.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION one (COMPULSORY) [30 MARKS]

- Define the following terms: i.
 - a. Urelement

(1Marks)

b. Universal set

(1 Marks)

c. Total function

(2 Marks)

Consider a set $U = \{x, y, z\}$. Determine the powerset of U. ii.

(3 Marks)

Show that the set of all positive even numbers $E = \{2, 4, 6, 8, ...\}$ is countably infinite. iii.

(4 Marks)

- With the aid of venn diagrams, describe the following terms with respect to sets: iv.
 - a. Intersection

(2 Marks)

b. Difference of a set

(2 Marks)

c. Proper subset

(2 Marks)

Consider the graph below. V.

Use adjacency lists to describe the simple graph.

(5 marks)

Let f and g be functions from the set of integers defined by $f(x) = 3x^2 - x + 10$ and vi. g(x) = 1 - 20x

a. Evaluate the composition of f and g $(f_o g)(x)$

(4 Marks)

b. Evaluate the composition of g and $f(g \circ f)(x)$

(4 Marks)

QUESTION TWO [20 MARKS]

i.	Find the cardinality of the following set:		
	$D = \{0, 1, 2, \{0, 1\}, (1,21, \{0, 1, 2\}, A)\}$	(2 Mark)	
ii.	Let A, B, C be any 3 sets. If $A \subseteq B$ and $B \subseteq C$. With the aid of a vent	diagram, prove	
	that $A \subseteq C$	(5 Marks)	
iii.	Determine the value of $\frac{d}{dx} \left(\frac{1}{\cos x} \right)$	(6 marks)	
iv.	Prove that $A = (A - B) \cup (A \cap B)$ for all sets A, B applying set identity theorems		
		(7 Marks)	
	QUESTION THREE [20 MARKS]		
i.	Let $X = \{\{\{b,c\},\{\{b\},\{c\}\}\},b\}$ and $Y = \{a,b,c\}$. Determine		
	a. set di □ erence of X and Y	(2 Marks)	
	b. set di□erence of Y and X	(2 Marks)	
	c. symmetric di □erence of X and Y	(2 Marks)	
ii.	X and Y are two non-empty sets where their relation $R = \{ (1, a), (1, b), (2, c) \}.$		
	Determine R ⁻¹ .	(2 Marks)	
iii.	nsider the function $f: A \rightarrow B$, where $A = \{a,b,c,d,e\}$ is the domain f, $B = \{1,2,3,4\}$ is		
	its codomain.		

- S
 - Draw the function arrow diagram for $f = \{(a,1), (b,3), (c,4), (d,2), (e,3)\}.$ a.

(5 Marks)

Explain the relation of the function b.

- (2 Marks)
- Using sets A and B containing any arbitrary number of elements, describe a total iv. bijective function (5 Marks)

QUESTION FOUR [20 MARKS]

i. If A and B are sets where $A = \{\{1, 2\}, \{3\}\}\$ and $B = \{(a, b), (c, d)\}$, show that

$$A \times B \neq B \times A$$
 (4 Marks)

ii. Consider the following graphs.

A

B

State and explain which graph forms a tree.

(4 Marks)

iii. Differentiate the function
$$h = \frac{4\sqrt{x}}{x^2-2}$$
 applying quotient rule

(6 marks)

iv. Using membership table, prove that A n (B U C) = (A n B) U (A n C) for all sets A, B, and

C.

(6 Marks)

QUESTION FIVE [20 MARKS]

- Let $A = \{a, b, c, d\}$ and let $R = \{(a, b), (b, c), (c, d), (d, b)\}$ be a relation on A.
 - Draw the directed graph representing R.

(2 Marks)

b. Determine the transitive closure R* of R.

(3 Marks)

ii. A set S is defined recursively by Basis step: $0 \in S$ and Recursive step:

if $a \in S$ then $a + 3 \in S$ and $a + 5 \in S$. Determine the set $S \cap \{a \in Z \mid 0 < a < 12\}$. (2 Marks)

iii. A function G which assigns grades to students is illustrated below.

Determine the

- a. Domain (1 Marks)
- **b.** Codomain (1 Marks)
- c. Range (1 Marks)
- Suppose that the amount of water in a holding tank at t minutes is given by $V(t) = 2t^2 16t + 35$. Determine if the volume of water in the tank increasing or decreasing at t = 5 minutes. (3 marks)
- v. Determine the integral of the function $\int \frac{4x^{10}-2x^4+15x^2}{x^3} dx$ (7 marks)