

(KNOWLEDGE FOR DEVELOPMENT)

KIBABII UNIVERSITY (KIBU)

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATION

YEAR THREE SEMESTER ONE EXAMINATIONS

FOR THE BACHELORS DEGREE

COMPUTER SCIENCE

COURSE CODE: CSC 350E

COURSE TITLE: SIGNALS AND SYSTEMS I

DATE: 04/02/2021 TIME: 11.00 A.M - 01.00 P.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO (2) QUESTIONS

QUESTION ONE [COMPUSORY] [30 MARKS]

a)	Describe the following terms:- i) Signal	[2marks]
	ii) System	[2marks]
b)	Differentiate between the following terms:- i) Periodic and non-periodic signals. ii) Continuous-time signal x(t) and Discrete-time signal x[n] iii) Even and odd signals.	[4marks] [6marks] [4marks] [6marks]
c)	Explain any THREE operations performed on a signal.	[omarks]
d)	Given the signal $x(t) = e^{-3t}u(t)$, determine	
	i) The Fourier Transform $X(j\omega)$	
	ii) The magnitude $ X(j\omega) $	*:
		[[]
	iii) The phase $\angle X(j\omega)$	[6marks]
QUESTION TWO [20 MARKS]		
a)	Convert the following complex numbers from Cartesian to polar form	
	i) 1+j;	[4marks]
1.5	ii) 1-2j. Static linearity and sinusoidal fidelity are concepts used in linear systems. Explain the	
b)	with the aid of diagrams	[4marks]
2)	Show that the following system linear-time-invariant	
c)	y(t) = x(t)g(t), where $x(t)$ and $y(t)$ denote the input and output, respectively.	[3marks]
11	Differentiate between energy and power signal.	[4marks]
d)	Show that the discrete time system described by the input-output relationship	
e)		[5marks]
	linear.	
QUESTION THREE [20 MARKS]		
a)	Differentiate between a continuous and discrete time signals.	[4marks]
b)	Is a discrete time signal described by the input output relation $y[n] = r^n x[n]$ time	ne invariant. [4marks]
2)	Evaluate, the magnitude $ (2-j2)^3 $ and the angle $\angle (-1-j)^2$.	[8marks]
c)		[4marks]
d)	For the signal $x(t)$ shown in Fig. 3d, sketch $x(2t-1)$.	[-tiliai Kə]

Figure 3.1

QUESTION FOUR [20 MARKS]

a) Determine if the following signals are periodic. For those that are periodic, what is the fundamental period?

 $i) \quad x[n) = e^{j\frac{4}{\pi}n}$ [2marks]

ii) $x[n) = e^{\int_{8}^{2\pi n}}$ [2marks]

b) Describe a time invariant systems [4marks]

c) Compute the polar form of the complex signals [6marks] i) $e^{j(1+j)}$

ii) $(1+j)e^{-j\pi/2}$.

d) Compute the rectangular form of the complex signals [6marks]

i) $2e^{j5\pi/4}$

ii) $e^{-j\pi} + e^{j6\pi}$.

QUESTION FIVE [20 MARKS]

a) Consider the system shown in Figure 5a. Determine whether it is (i) memoryless, (ii) causal, (iii) linear, (iv) time-invariant, or (v) stable. [6marks]

Figure 1

b) Outline the properties of a system.

[4marks]

- c) Suppose x[n] is a discrete-time signal, and let y[n]=x[2n].
 - i) If x[n] is periodic, is y[n] periodic? If so, what is the fundamental period of y[n] in terms of the fundamental period of x[n]? [3marks]
 - ii) If y[n] is periodic, is x[n] periodic? If so, what is the fundamental period of x[n] in terms of the fundamental period of y[n]? [3marks]
- d) Sketch the signals
 - i) u[n-3]

ii) u[2n-3]

[2marks]

[2marks]