



(KNOWLEDGE FOR DEVELOPMENT)

# KIBABII UNIVERSITY (KIBU)

### UNIVERSITY EXAMINATIONS **2019/2020 ACADEMIC YEAR**

## SPECIAL/SUPPLEMENTARY EXAMINATIONS FIRST YEAR FIRST SEMESTER

### FOR THE DEGREE IN (INFORMATION TECHNOLOGY/ COMPUTER SCIENCE)

COURSE CODE: BIT 111/CSC 112

COURSE TITLE: DISCRETE STRUCTURES

DATE: 29/01/2021

TIME: 11.00 A.M. - 1.00 P.M.

#### INSTRUCTIONS

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

- a. Write the truth table of the following two formulas (p ∧ ¬ (q ∨ r)) and (¬p ∨ (q ∨ r)). Say for each one if it is a tautology, satisfiable or contradiction. Say if one is a logical consequence of the other.
  [4 marks]
- b. Evaluate the following

i. C (11, 5)

[2 marks]

ii. P (7, 3)

[2 marks]

- c. In a survey of 100 students, if was found that 40 studied mathematics, 64 studied physics 35 studied chemistry, 1studied all 3 subjects, 25 studied maths and physics, 3 studied math's and chemistry and 20 studied physics and chemistry. Find the number of students who studied chemistry only. [5 marks]
- **d.** Let P(x,y) denote the statement x = y+3. What are the truth values of the Proposition P(1,2), P(3,0). [2 marks]
- e. Let R be the relation on the set  $A = \{1, 2, 3, 4, 5, 6, 7\}$  defined by the rule  $(a, b) \in R$  if the integer (a b) is divisible by 4. List the elements of R and its inverse.

[3 marks]

- f. Bob want to buy 12 muffins and finds 7 different types available. In how many ways can he make his selection, if each type has enough many pieces? (You do not need to simplify.

  [4 marks]
- g. Let  $f: R \to R$  be defined by  $f(x) = 2x^2 1$ .

i. Find domain, target (or codomain), and range of f.

[3 marks]

ii. Is f one-to-one? Justify your answer.

[3 marks]

iii. Is f onto? Justify your answer.

[2 marks]

#### **QUESTION TWO**

[20 MARKS]

a. i. Using Euclidean algorithm find the GCD and LCM of 31415 and 1412.

[3 marks]

ii. Find the value of x and y in x(31415)+ y(1412)=gcd( 31415, 1412).[4 marks]

b. Prove by the method of induction that for all neN then,

$$\frac{1}{3*5} + \frac{1}{5*7} + \frac{1}{7*9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

[6 marks]

### QUESTION THREE

[20 MARKS]

a. Let  $A = \{3,5,7,9\}$ ,  $B = \{2,3,5,6,7\}$ , and  $C = \{2,4,6,8\}$  be all subjects of the universe  $U = \{2,3,4,5,6,7,8,9\}$ . Find

i. the union of A and B;

[2 marks]

ii. the intersection of B and C;

[2 marks]

iii. the complement C of the set C;

[2 marks]

**b.** Of 100 students in a university department, 45 are enrolled in English, 30 in History, 20 in Geography, 10 in at least two of three courses and just 1 student is enrolled in all three courses.

i. Represent these information on a Venn diagram

[4 marks]

ii. How many students take none of these courses?

[2 marks]

c. The students who stay in hostel were asked whether they had a textbook and a digest in their rooms. The results showed that 650 students has text, 150 did not have a textbook, 175 had digest and 50 had neither a textbook nor a digest. Find:

i. The number of students in the hostel

[3 marks]

ii. How many have both a textbook and digest

[3 marks]

iii. How many have only a digest

[2 marks]

#### QUESTION FOUR

[20 MARKS]

- a. Given sets A, B and C such that all are non-empty sets. State the inclusive-exclusive principle.[2 marks]
- b. Write the predicate notation for the following statements:

[2 marks] Some students in Discrete Mathematics class smoke 1. [2 marks] Jane loves anybody who is a musician and sings gospel ii. c. Give the  $f(x) = \frac{x+1}{x^2}$ ,  $g(x) = 3x^2 + 4$  and  $h(x) = \frac{x^2-1}{x+1}$  find: [2 marks] Domain and range of f(x) and h(x)The inverse  $g^{-1}(x)$  of g(x)[3 marks] ii. [2 marks] Is g(x) bijective? Explain. iii. [4 marks] f(g(h(x)))iv. [3 marks] g(h(2))v. [20 MARKS] **QUESTION FIVE** a. Let R be the relation on the set  $A = \{1, 2, 3, 4, 5, 6, 7\}$  defined by the rule (a, b)b)  $\in R$  if the integer (a - b) is divisible by 4. List the elements of R and its [4 marks] inverse. b. Let  $A = \{2, 3, 4, 5\}$  and let  $R = \{(2, 3), (3, 3), (4, 5), (5, 1)\}$ . Is R symmetric, [2 marks] asymmetric or antisymmetric? c. Let  $A = \{1, 2, 3, 4, 6\}$  and R be the relation on A defined by "x divides y", written an  $x \mid y$ . [2 marks] Write R as a set of ordered pairs. i. [2 marks] ii. Draw a directed graph of R. [2 marks] Write down the matrix of relation R. iii. Find the inverse relation R-1 of R and describe it in words. [2 marks] iv. d. Say the only clothes you have are 2 t-shirts, 4 pairs of jeans and 6 pairs of shoes. In how many combinations you can choose a t-shirt, a pair of jeans [3 marks] and a pair of shoes? e. How many students must be in a class to guarantee that at least 4 students receive same score on the final exam, if the exam is graded on a scale from 0

to 100 points

[3 marks]