

(KNOWLEDGE FOR DEVELOPMENT)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR **END OF SEMESTER EXAMINATIONS** YEAR ONE SEMESTER ONE EXAMINATIONS

FOR THE BACHELORS DEGREE

COMPUTER SCIENCE

COURSE CODE: CSC 116

COURSE TITLE: ELECTRICAL PRINCIPLES

DATE: 15/02/2021

TIME: 2.00 P.M - 4.00 P.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO (2) QUESTIONS

QUESTION ONE [COMPUSORY] [30 MARKS]

- a) Define electric current in terms of charge and Time [3mks]
- Calculate the power dissipated when a current of 4mA flows through a resistance of $45k\Omega$.

[3mks]

c) A source e.m.f. of 15V supplies current of 4A for 20 minutes. How much energy is provided in this time?

[3mks]

d) i) State Kirchhoff's first law.

[3mks]

i) Find the unknown current in Figure 1.1

[3mks]

Figure 1d

- e) Kirchhoff's first law expresses the conservation of an important physical quantity. Name the [2mks] quantity that is conserved.
- f) Find the current I₃ in the node as shown in figure 1.1

[3mks]

g) Several identical cells are used to connect up circuits. Each cell has e.m.f 1.5V. Determine [4mks] the total e.m.f for the following combinations of cells.

Figure 1.2

h) Use Kirchhoff's second law to calculate the current I in the circuit of figure 1.3 [3mks]

Figure 1.3

k) A capacitor has a reactance of 40Ω when operated on a 50 Hz supply. Determine the value of [3mks] its capacitance.

QUESTION TWO [20 MARKS]

a) Define electrical power and state its unit

[3mks]

- b) A current of 5A flows in the winding of an electric motor, the resistance of the winding being 100Ω . Determine the
 - p.d. across the winding, i)

[2mks]

Power dissipated by the coil. ii)

[2mks]

c) i) Calculate the reactance of a coil of inductance 0.32H when it is connected to a 50 Hz supply.

[2mks]

- A coil has a reactance of 124Ω in a circuit with a supply of frequency 5 kHz. Determine ii) [2mks] the inductance of the coil.
- d) A coil of inductance 159.2mH and resistance 20Ω is connected in series with a 60Ω resistor to a 240V, 50 Hz supply. Determine the
 - Impedance of the circuit, i)

[3mks]

Current in the circuit, ii)

[2mks]

p.d. across the 60Ω resistor iii)

[2mks]

Draw the circuit phasor diagram showing all voltages. iv)

[2mks]

QUESTION THREE [20 MARKS]

a) State superposition theorem

[3mks]

b) Use the superposition theorem to determine the current in each branch of the arrangement [10mks] shown in Fig. 3.1

Fig. 3.1

- c) Name the units used to measure:
 - i) the quantity of electricity

[1mk]

ii) resistance

[1mk]

[1mk] iii) conductance

d) With the aid of a sketch, differentiate between a linear and nonlinear device.

[4mks]

QUESTION FOUR [20 MARKS]

a) i) Determine the current flowing when charge of 270 C is transferred in 4 minutes. [3mks] ii) How long must a current of 200mA flow so as to transfer a charge of 100 C? [3mks]

[3mks] b) State Thévenin's theorem

c) Determine the current in the 5Ω resistance of the network shown in Fig. 4.1 using Thévenin's theorem. Hence find the currents flowing in the other two branches. [7mks]

Fig. 4.1

d) For the circuit in figure 4d, find the value of the load resistor R_L that gives maximum power [4mks] dissipation and determine the value of this power.

QUESTION FIVE [20 MARKS]

- a) The current flowing through a resistor is 0.85A when a p.d. of 12V is applied. Determine the [3mks] value of the resistance.
- [3mks] b) State Norton's theorem c) From the circuit shown in figure 5c determine the current through the 10Ω resistor using (a)
- [10mks] Thévenin 's theorem, and (b) Norton 's theorem.

