

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

THIRD YEAR SPECIAL/ SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR OF EDUCATION AND
BACHELOR OF SCIENCE

COURSE CODE: MAT 303

COURSE TITLE: LINEAR ALGEBRA III

DATE:

17/02/2021

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

(a). Define the following terms

(i). Real inner product function

(4 Marks)

(ii). Hermitian matrix

(1 Mark)

(iii). Nilpotent matrix

(1 Mark)

(iv). A bilinear function

(2 Marks)

(b). Prove that an orthogonal matrix is Isometric.

(4 Marks)

(c). Find the eigenvalues of matrix A.

$$A = \begin{bmatrix} 3 & 2-i & -3i \\ 2+i & 0 & 1-i \\ 3i & 1+i & 0 \end{bmatrix}$$

(4 Marks)

(d). Make a change of variable to transform the quadratic form $Q(x) = 2x_1^2 - 6x_1x_2 + 2x_2^2$ into a quadratic form with no cross-product terms. (7 Marks)

(e). Prove the eigenvectors in different eigenspaces of a symmetric matrix are orthogonal.

(4 Marks)

(f). Let λ be an eigenvalue of a real $n \times n$ matrix, B, and x the corresponding eigenvector. Show that if $\bar{\lambda}$ is also an eigenvalue of B and \bar{x} is a corresponding eigenvector. (3 Marks)

QUESTION TWO (20 MARKS)

a). Define a unitary matrix hence show that it is Isometric.

(5 Marks)

b). Let P and Q be linear transformations on complex vector space V such that $P\colon V\to V$ and $\colon V\to V$. Prove that

(i).
$$(P+Q)^* = P^* + Q^*$$

(3 Marks)

(ii).
$$(PQ)^* = P^*Q^*$$

(3 Marks)

(iii).
$$(kP)^* = \overline{k}P^*$$

(3 Marks)

c). Prove that the orthogonally diagonalizable matrix has an orthonormal set of n eigenvectors.

(6 Marks)

QUESTION THREE (20 MARKS)

- (a). Find Euclidean inner product $\langle u,v\rangle$, and the norm $\|u\|$ where u=(1+4i,-2i,3i-1) and v=(1-4i,2i,3i-1).
- (b). Let \mathbb{C}^n be a complex vector space $u,v\in\mathbb{C}^n$. If $\overline{u},\overline{v}$ denotes the conjugates of u and v respectively. Prove that. $\overline{u+v}=\overline{u}+\overline{u}$.
- (d). Prove that a matrix N is nilpotent if and only if its eigenvalues are zero. (7 Marks)
- (d). Determine all possible Jordan Canonical forms J for a linear operator $T: V \to V$ whose characteristic polynomial $\Delta(t) = (t-4)^6$ and whose minimum polynomial $m(t) = (t-4)^3$.

(6 Marks)

QUESTION FOUR (20 MARKS)

a).(i).What is an orthonormal set of vectors

(2 Marks)

- (ii). Prove that if A is $n \times n$ orthogonal matrix, then the column vectors of A forms an orthonormal set in \mathbb{R}^n with the Euclidean inner product (6 Marks)
- b).(i). Let A be $n \times n$ matrix over K. Show that the mapping f defined by $f(X,Y) = X^TAY$ is a bilinear form on K^n . (5 Marks)
 - (ii). Find a quadratic form corresponding to the following symmetric matrix

$$A = \begin{bmatrix} 1 & -2 & 5 \\ -2 & 16 & -4 \\ 5 & -4 & 4 \end{bmatrix}$$
 (2 Marks)

(iii). Hence, classify the matrix as either positive definite, negative definite or indefinite. Show your working. (5 Marks)

QUESTION FIVE (20 MARKS)

Orthogonally diagonalize matrix A,
$$A = \begin{bmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{bmatrix}$$
 (20 Marks)