

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS

COURSE CODE:

STA 448

COURSE TITLE:

STOCHASTIC PROCESS II

DATE:

15/02/21

TIME: 11 AM -1 PM

INSTRUCTIONS TO CANDIDATES
Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1: (30 Marks) (COMPULSORY)

- a) Let X have the distribution of the geometric distribution of the form $Prob(X = k) = p_k = q^{k-1}p$, k = 1, 2, 3, ...Obtain the probability generating function and hence find its mean and variance [9mks]
- b) Given that random variable X have probability density function $pr(X = k) = p_k$ k = 0, 1, 2, 3, ... with probability generating function $P(S) = \sum_{i=1}^{\infty} p_k s^k$ and $q_k = p_k(X = k) = p_{k+1} + p_{k+2} + p_{k+3} + \cdots$ with generating function $\phi(s) = \sum_{i=1}^{\infty} q_k s^k$ Show that $(1-s)\phi(s) = 1-p(s)$ and that $E(X) = \phi(1)$ [6mks]
- c) Find the generating function for the sequence {0, 0, 0, 5, 5, 5, 5, ...} [2mks]
- d) Define the following terms

Beiline the folio wing to		[1mk]
i	Absorbing state	Limki
		[1mk]
ii.	Irreducible markov chains	The second secon
	Period of a state of markov chains	[1mk]
iii.	Period of a state of markov chains	[TIIIK]

e) Classify the state of the following stochastic markov chain

[10mks]

QUESTION 2: (20 Marks)

The difference – differential equation for pure birth process are

$$P_n'(t) = \lambda_n p_n(t) + \lambda_{n-1} p_{n-1}(t), \quad n \geq 1$$
 and

$$P_0'(t) = -\lambda_0 p_0(t), \ n = 0.$$

Obtain $P_n(t)$ for a non – stationary pure birth process (Poisson process) with $\lambda_n = \lambda$ given that

$$P_0(t) = \begin{cases} 1 & for \ n = 0 \\ 0 & otherwise \end{cases}$$

Hence obtain its mean and variance

QUESTION 3: (20 Marks)

a) Let X have a Poisson distribution with parameter λ i.e.

Prob
$$(X = k) = p_k = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0, 1, 2, 3, ...$$

Obtain the probability generating function of X and hence obtain its mean and variance [5mks]

b) Using Feller's method, find the mean and variance of the difference – differential equation

$$P'_n(t) = -n(\lambda + \mu)p_n(t) + (n-1)\lambda p_{n-1}(t) + \mu(n+1)p_{n+1}(t), \ n \ge 1 \text{ given}$$

$$m_1(t) = \sum_{n=0}^\infty n p_n(t)$$
 , $m_2(t) = \sum_{n=0}^\infty n^2 p_n(t)$ and

$$m_3(t) = \sum_{n=0}^{\infty} n^3 p_n(t)$$
 conditioned on $p_1(0) = 0$, $p_n(0) = 0$,

$$n \neq 0$$
 [14mks]

QUESTION 4: (20 Marks)

a) Define the following terms

•	T .	
1.	Transient state	[1mk]
11	Ergodic state	
		[1mk]
iii	Recurrent state	
111.	recuirent state	[1mk]
		[1mk

b) Classify the state of the following transitional matrix of the markov chains

$$E_1 \qquad E_2 \qquad E_3 \qquad E_4 \qquad E_5 \qquad \dots \\ E_1 \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 & \dots \\ 1/2 & 0 & 1/2 & 0 & 0 & \dots \\ 1/2 & 0 & 0 & 1/2 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1/2 & 0 & 0 & 0 & 0 & 0 & \dots \end{bmatrix}$$

[17mks]

QUESTION 5: (20 Marks)

a) Let X have a binomial distribution with parameter n and p i.e.

Prob
$$(X = k) = p_k = \binom{n}{k} p^k q^{n-k}$$
, $k = 0,1,2,3,...,n$
Obtain the probability generating function of X and hence find its mean and variance. [7mks]

b) Consider a series of Bernoulli trials with probability of success **P**. Suppose that **X** denote the number of failures preceding the first success and **Y** the number of failures following the first success and preceding the second success. The joint pdf of **X** and **Y** is given by

$$P_{ij} = pr\{x = j, y = k\} = q^{j+k}p^2$$
 $j, k = 0, 1, 2, 3, ...$

i. Obtain the Bivariate probability generating function of X and Y

ii.	Obtain the marginal probability generating function of X	[3mks] [2mks]
111.	Obtain the mean and variance of <i>X</i>	[4mks]
1V.	Obtain the mean and variance of Y	[4mks]