

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE:

MAT 811

COURSE TITLE:

ABSTRACT INTERGRATION I

DATE:

15/02/2021

TIME: 2 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE

a) Define the following terms:

(5marks)

i. Ring

ii. δ - Ring

iii. Monotone class

iv. Measure

v. Borel function

b) Given R is a ring of subset of a set x. Show that M(R) = G(R) i.e the monotone class coincides with the ring generated by the ring R. (5marks)

c) Show that if a measure on a ring R and M is the class of all M^* - measurable sets, then $G(R) \le M$ and the restriction of M^* to G(R) is a measure \overline{M} extending M (7 marks)

d) State the 'Unique extension theorem' U.E.T

(3marks)

QUESTION TWO

a) Define the following terms:

i. Measurable space (1mark)
 ii. Locally measurable (1mark)
 iii. Measurable functions (2marks)

iv. Characteristics functions

(2marks)

b) Show that in order that a function $f: x \to \mathbb{R}$ be measurable, it is necessary and sufficient that

i. N(f) be measurable and

ii. $f^{-1}(M)$ be locally measurable for every borel set M. (7marks)

c) Let f_n be a sequence of measurable functions. Suppose that for each point in x in X, the sequence $f_n(x)$ is bounded below so that g = GLB f_n is real – valued. Then the function g is also measurable. Similarly, if the sequence $f_n(x)$ is bounded above for each point x, then show that the function h = LUB f_n is measurable. (7marks)

QUESTION THREE

a) Suppose f and g are simple functions, c is a real number and A is locally measurable set, then show that all of the following functions are simple (8marks)

i. Cfii. f+giii. l+liv. $f \cup g$ v. $f \cap g$ vi. f^+,f^- vii. X_A,f viii. $f \in G$

- b) Suppose f is a measurable function, α is a real number and c > 0, then show that $f \cap c$ is a measurable function. (6marks)
- c) Show that if f is a measurable function, then there exists a sequence of simple functions f_n such that f_n converges to f pointwise on f_n , that is $f_n(x) \to f(x)$ for each $f_n(x)$ in $f_n(x)$ in $f_n(x)$ converges to $f_n(x)$ in $f_n(x)$ converges to $f_n(x)$ in $f_n(x)$ converges to $f_n(x)$ in $f_n(x)$ in $f_n(x)$ in $f_n(x)$ is a measurable function, then there exists a sequence of simple functions $f_n(x)$ is a measurable function, then there exists a sequence of simple functions $f_n(x)$ is a measurable function, then there exists a sequence of simple functions $f_n(x)$ is a measurable function, then there exists a sequence of simple functions $f_n(x)$ is a measurable function, then there exists a sequence of simple functions $f_n(x)$ is a measurable function, then there exists a sequence of simple functions $f_n(x)$ is a measurable function $f_n(x)$ is a

QUESTION FOUR

- a) Show that in a finite measure space (x, J, m). The measure M is necessarily bounded that is the number $L \cup B\{M(E): E \in J\}$ (8marks)
- b) Show that
 - i. If $f_n \to f$ a. e then f_n is fundamental a.e (3marks)
 - ii. If $f_n \to f$ a. e and $f_n \to g$ a. e than f = g a. e (3marks)
 - iii. If $f_n \to f$ a. e and g is a real valued function such that $f_n \to g$ a. e and $f_n \to f$ a. e (3marks)
 - iv. If f_n , f, g are real valued functions $f_n \to f$ a. e and $f_n \le g$ a. e for each n then $f \le g$ a. e (3marks)

QUESTION FIVE

- a) Show that if f_n is a sequence of *ISF* (untegrable simple funvctions) such that $f_n \downarrow 0$ then $l(f_n) \downarrow o$ (5 marks)
- b) Show that if $f \ge 0$ and $g \ge 0$ are integrable, $c \ge 0$ is a real number and A is a locally measurable set then
 - i. cf is integrable and $\int cf du = c \int f du$ (5marks)
 - ii. f + g is integrable and $\int (f + g)du = \int fgu + \int gdu$ (5marks)
- c) Suppose $0 \le f_n \uparrow f$ and $0 \le g_n \uparrow f$, where f is measurable, f_n and g_n are sequences of *ISF* and $l(f_n)$ is bounded. Then show that $l(g_n)$ is bounded and $L \cup B_n l(f_n) = L \cup B_n l(g_n)$ (5 marks)