

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER SUPPLEMENTARYEXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 211

COURSE TITLE:

ATOMIC STRUCTURE AND CHEMICAL

BONDING

DATE: 15 2/21 TIME: 8-10 AM

INSTRUCTIONS TO CANDIDATES:

TIME: 2 Hours

Answer question ONE and any TWO of the remaining

KIBU observes ZERO tolerance to examination cheating

Plank's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Speed of light(in vacuum), $c = 2.998 \times 10^8 \text{ms}^{-1}$

Rydberg's constant, R_H = 1.0968 x10⁷ m⁻¹

Mass of electron, $m_e = 9.11 \times 10^{-31} \text{kg}$

 $1A=10^{-10}$ m and 1J=1 kgm²s⁻²

Electronic charge, $e = 1.602 \times 10^{-19} C$

Permittivity, ξ_0 =8.854188 x 10⁻¹² C²/Jm

Question one (30marks)

- a) Briefly explain the discovery of protons as illustrated by Rutherfold gold foil experiment(3marks)
- b) State any two limitations of the Bohr atom(2marks)
- c) An electromagnetic radiation causes an electron to jump from the second energy level to the fourth energy level. Calculate; $E_n = -\frac{Z^2 m e^4}{8h^2 \xi_0^2} \left(\frac{1}{n_1^2} \frac{1}{n_2^2} \right)$
- i) Its energy(3marks)
- ii)Hence its wavelength(3marks)
- d) State two quantum numbers and the significance of each of them(4marks)
- e) Provide the electronic configuration of the following species(2marks)
- i) Fe³⁺
- ii) Al
- f) Draw diagrams to show the shapes of s, px, py and the pz orbitals(4marks)
- © Construct the correlation diagram for dicarbon(4marks)
 - ii) Calculate the bond order(3marks)
 - iii) Write the ground state valence-electron configuration of C2 (2marks)

Question two (20 marks)

- a) Define the following terms
- i) Electronegativity(2marks)
- ii) Electron affinity

(2marks)

- b) Whereas sulphur has a low melting point, calcium oxide has high melting points. Explain(4marks)
- c i) Differentiate between pi (π) and sigma (δ) covalent bonds (4marks)
- ii) Use ethene (CH2CH2) molecule to show how sigma and pi bonds are formed(4marks)
- d) Describe intramolecular hydrogen bond

(2marks)

e) Distinguish between the following terms; 'hybrid atomic orbital and molecular orbital'. Illustrate your answer with a relevant example (2marks)

Question three (20 marks)

- a) State Pauli's exclusive principle(1mark)
- b) Calculate the effective nuclear charge (Z_{eff}) for a 4s electron versus a 3d electron in Zinc (4marks)
- c) Using boron trifluoride (BF₃), show how sp² hybridization occurs and account for its molecular shape(5marks)
- d) Give 3 limitations of the valence bond theory(3marks)
- e) Describe the delocalization and shape of molecular orbital using benzene molecule (3marks)
- f) Draw the resonance structure for CO₃²-(4marks)

Question four (20 marks)

- a) Define the following terms;
- i)Lattice energy(2marks)
- ii) Polarity

(2marks)

b) Construct a Born Haber cycle for the formation of calcium chloride given that the enthalpy of formation is -796 kJ/mole and calculate the lattice energy of the calcium chloride from the following data; $Ca^{2+}_{(g)} + 2Cl^{-}_{(g)} CaCl_{2(s)}$ (4 marks)

Ca_(s) Ca_(g)∆H atomization = 178 kJ/mole

 $Ca_{(g)}Ca_{(g)}^{+}+e\Delta H_{IE}=590 \text{ kJ}/\text{mole}$

 $Ca_{(g)}^{+}Ca_{(g)}^{2+}+e ; \Delta H_{IE} = 1.145 \text{ kJ/mole}$

Cl_{2(g)}2Cl_(g); ∆H of atomi2ation=121 kJ/mole

$$Cl_{(g)}$$
 \longrightarrow $Cl_{(g)}^{-}\Delta H_{EA} = 364 \text{ kJ/mole}$

- c) Two important concepts that relate to the behavior of electrons in atom systems are the Heisenberg principle and the wave particle duality of matter.
- i) State the Heisenberg uncertainty principle as it relates to the determination of the position and momentum of an object(2marks)
- ii) What aspect of the Bohr Theory of the atom is considered unsatisfactory as aresult of the Heisenberg uncertainty principle (3marks)
- d) A radioactive material emits photons, each having energy of 1.6 x 10⁻¹³J. Calculate the frequency of the electromagnetic radiation emitted by the radioactive material (4marks)
- e) Use De Broglie equation below to calculate the wavelength of an electron with a velocity of $5.97 \times 10^6 \text{ms}^{-1}$ (3marks)

$$\lambda = \frac{h}{m \times V}$$

QUESTION 5 (20 MARKS)

- a)Use De Broglie hypothesis to discuss the relationship between quantum mechanics and quantum theory (6marks)
- b) Show the consequence of penetration effect on orbital energy level diagrams for multielectron atoms(6marks)
- c) State the shapes and bond angles of the following molecules using the VSEPR model(6marks)
- i) BCl₃
- ii) SiCl₄
- iii) AsF5
- d) What is a black body(2marks)