

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
THIRD YEAR FIRST SEMESTER
SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

MAT 323

COURSE TITLE: NUMERICAL ANALYSIS I

DATE:

12/02/2021

TIME: 11 AM -1 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages, Please Turn Over.

QUESTION I (30 marks)

- a) Find to three decimal places the root of the equation $x^3 5x 11 = 0$ by the method of (5 marks) iteration.
- b) Find the first term of the sequence whose second and subsequent terms are 8, 3, 0, -1, 0, ... (4 marks)
- c) Using the simple form of Newton's method, solve the equations (up to (x^2, y^2)).

$$f(x, y) = y^{2} + 4x^{2} + 2xy - y - 2 = 0$$

$$g(x, y) = y^{2} + 2x^{2} + 3xy - 3 = 0$$
 starting with $x_{0} = 0.4$, $y_{0} = 0.9$ (10 marks)

d) Use Lagrange's formula to fit a polynomial to the data:

x	-1	0	2	3
у	-8	3	1	12

and hence find y at x = 1.

(4 marks)

- e) i) Given that $y_3 = 2$, $y_4 = -6$, $y_5 = 8$, $y_6 = 9$ and $y_7 = 17$, calculate $\Delta^4 y_3$ (4 marks)
 - ii) Show that $\delta = E^{-\frac{1}{2}}\Delta = E^{\frac{1}{2}}\nabla$ where δ is the central difference operator, E is the shifting operator, Δ and ∇ are the forward and backward difference operators respectively.

(3 marks)

QUESTION 2 (20 marks)

- a) Find the seventh term of term of the sequence 2, 9, 28, 65, 126, 217 and also find the general (5 marks) term.
- b) Using the Newton-Raphson method, solve the equations $x^2 + y^2 = 16$ and $x^2 y^2 = 4$ given that the starting solution is $(2\sqrt{2}, 2\sqrt{2})$ (2 iterations) (12 marks)
- (3 marks) c) Convert the hexadecimal number 39.B8 to an octal number.

QUESTION 3 (20 marks)

a) Use values at x_0 and x_1 in the table below to get an interpolated value for $f(x) = \sin x$ at x = 0.632 radians using linear interpolation, and compute an error estimate for the interpolated value.

iterpolated value.	$x_0 = 0.5^c$	$x = 0.632^{\circ}$	$x_1 = 1.00^{\circ}$
x .	0.47942554		0.84147099
$f(x) = \sin x$	0.47)42331		(6 marks)

(6 marks)

b) From the data given below, find the value of x when y = 13.5 using Lagrange's formula for inverse interpolation:

r inverse	interpolation.	06.2	100.0	104.2	108.7
x	93.0	96.2		17.07	19.91
y	11.38	12.8	14.7	17.07	(6 marks)

c) i) Apply Gauss's forward central difference formula to estimate f(32) from the following table:

ble:	25	30	35	40
x	23			0.3794
V	0.2707	0.3027	0.3386	(4 marks)

ii) If
$$\sqrt{12500} = 111.803399$$
, $\sqrt{12510} = 111.848111$, $\sqrt{12520} = 111.892805$, $\sqrt{12530} = 111.937483$, find $\sqrt{12516}$ by Gauss's backward formula. (4 marks)

QUESTION 4 (20 marks)

a) Find the gradient of the road at the middle point of elevation above a datum line of seven points of a road which are given below using Stirling's formula

		1000	600	900	1200	1500	1800
x	0	300	000			205	103
	125	149	157	183	201	205	193
y	135	142	137			(5 m	arks)

- Evaluate $I = \int_{0}^{1} \frac{dx}{1+x^2}$ using Romberg's method by taking $h = \frac{1}{2}, \frac{1}{4}$ and $\frac{1}{8}$ hence obtain the b) (9 marks) approximate value of π
 - a) Evaluate $I = \int_{0}^{6} \frac{1}{1+x} dx$ using

i) Trapezoidal rule

ii) Simpsons' rule

(2 marks)

(4 marks)

QUESTION 5 (20 marks)

c) Find the two derivatives of $(x)^{1/3}$ at x = 50 and x = 56 given the table below:

100 mm	50	51	52	53	54	55	56
X	50	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259
$y = x^{/3}$	3.6840	3.7004	3.1323	3.7200			

(10 marks)

b) Convert the decimal number (438)₁₀ to a binary number

(5 marks)

d) Find the value of f'(0.5) using Stirling's formula from the following data

				1	0.55	0.60	0.65
v	0.35	0.40	0.45	0.50	0.55		
λ	1.521	1.506	1.488	1.467	1.444	1.418	1.389
1)		1 1 200	1.400	2			

(5 marks)