

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

STA 346

COURSE TITLE:

QUALITY CONTROL AND ACCEPTANCE

SAMPLING

DATE:

03/02/21

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION 1: (30 Marks) (COMPULSORY)

a) Give the three main objectives of a control chart

[3mks]

b) What are the main applications of a control chart

[4mks]

- c) A large batch of items to be inspected using a single sampling scheme specified by the following values $n=40,\ c=2,\ \theta_1=0.02,\ \text{and}\ \theta_2=0.1$
 - i. Define the operating characteristic of this sampling plan

[2mks]

ii. Find the probability of accepting a lot of quality $\theta = 0.05$

[3mks]

iii. Find the consumer's risk and the producer's risk

[4mks]

- d) Workout the O.C curve and the ARL function for S^2 -chart with upper warning limits given by $P[\sum (x_i \bar{x})^2 > k] \leq 0.05$ and action is taken only if two consecutive values of S^2 fall beyond the upper warning limit (take n=12, $\theta=\frac{\sigma^{2*}}{\sigma}$ and $\theta\to(-\infty,0,\infty)$
- e) suppose that the mean has shifted from μ to μ^* but σ^2 remain unchanged assuming normality (take $\alpha=0.002$)
 - i. Find the probability that the process is under control for the \bar{x} chart

[4mks]

ii. Show that the Average Run Length function of the $\bar{x}-chart$ is given by $\frac{1}{1-P(\theta)}$. Assuming that samples taken from the process are independent, where θ is the incoming quality [4mks]

QUESTION 2: (20 Marks)

a) Explain each of the following concepts

i. Average sampling numbers [ASN]

[2mks]

ii. Average outgoing quality [AOQ]

[3mks]

iii. Lot tolerance percent defective (LTPD)

[3mks]

iv. Acceptance Quality Level [AQL]

[2mks]

- b) What do you understand by the moving average chart? Explain clearly how you can use it to determine whether a system is out of control or not. [5mks]
- c) When do we use S^2 chart? Explain clearly how you can use it to determine whether a system is out of control or not. If n=4 and $\alpha=0.02$, obtain its upper action and warning limits. [5mks]

QUESTION 3: (20 Marks)

- a) If n is large and p is moderately small and we let $\lambda = np$, obtain C-chart for the number of defectives per unit. (Take $\alpha = 0.001$ for action limit and $\alpha = 0.025$ for warning limit [7mks]
- b) Obtain a single sampling for the proportion of defectives, fixing the producer's risk $\alpha=0.09$ at $\theta_1=0.05$ and the consumer's risk $\beta=0.1$ at $\theta_1=0.1$ and hence give your conclusion [6mks]
- c) A large batch of items is to be tested by using double sampling inspection scheme specified by the following numbers $n_1=20$, $n_2=40$, $c_1=0$, $c_2=c_3=2$
 - i. Obtain an expression for the probability of accepting a batch in which the true proportion of defective is θ [4mks]
 - ii. Obtain the value of this probability when $\theta=0.05$ and $\theta=0.1$

[3mks]

QUESTION 4: (20 Marks)

a) Briefly describe the important steps in constructing an \bar{x} – chart

[5mks]

b) Briefly compare the single sampling plan and the double sampling plan

[3mks]

c) The data below are samples means and sample ranges for ten consecutive samples, each sample consisting of five measurements of a continuous random variable x. Assuming x is normally distributed plot $\bar{x} - control \ chart$ and comment on the degree of control

Sample No.	1	2	3	4	5	6	7	8	9	10
Sample mean	126.2	127.4	126.6	129.8	126.0	125.0	126.8	132.0	127.4	126.2
Sample Range	8	6	7	6	8	7	6	19	6	7

 $a_n = 0.4299 \ for \ n = 5$

[6mks]

d) Explain briefly how you use control chart for fractional defective (p -chart) to determine whether the process is in control or not and hence show its warning and action limit on a p-chart. (take $\alpha = 0.002$ for action limit and $\alpha = 0.05$ for warning limit) [6mks]

QUESTION 5: (20 Marks)

- a) i. Construction a sequential sampling plan from a Bernoulli population that following values $\theta_0=0.02, \theta_1=0.08, \alpha=0.05 \text{ and } \beta=0.1$ [3mks]
 - ii. An inspector test 40 units from a large lot. Would he have come to a decision to reject or accept the lot if he found the 10th, 18th, and 23rd unit defective. [3mks]
- b) A company purchases large lots of items using a single sampling plan for which n=4 and c=0
 - i. Find the probability of acceptance of a lot in terms of proportion of defective items it contains.

[2mks]

- ii. What is the probability of
 - 1. A lot containing 50% defective being accepted

[2mks]

2. A lot containing 10% defective being rejected

[2mks]

- iii. Estimate the AQL (θ) corresponding to a producers risk of 5% and LTPD (θ) corresponding to consumer's risk of 10% [3mks]
- iv. If rectification is agreed on, find the expression for the average outgoing quality (AOQ) in terms of the incoming quality. Find AOQ if $\theta=0.05$ [2mks]
- v. Calculate the average total inspection (ATI) of lots of size 100 of quality $\theta=0.05$ [3mks]