

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

STA 443

COURSE TITLE:

PROBABILITY AND MEASURE

DATE:

03/02/2021

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)(COMPULSORY)

- (a) Define the following terms:
 - i. Measurable space (2 marks)
 - ii. Sigma-algebra (2 marks)
 - iii. Sample space (1 mark)
- (b) Suppose that $A, B \in A$. Show that $\mu(B) = \mu(A \cap B) + \mu(B)$ (3 marks)
- (c) Let $\{F_i \subset \mathbb{R}^n : i \in \mathbb{N}\}$ is countable collection of \mathbb{R}^n . Show that

$$\mu^*(\cup_i^\infty F_i) \le \sum_{i=1}^\infty \mu^*(F_i)$$

(5 marks)

- (d) State and explain briefly two types of measure (4 marks)
- (e) State and prove the Monotone Convergence Theorem (5 marks)
- (f) Differentiate the following
 - i. Probability space and probability measure (2 marks)
 - ii. Measurable space and Measure space (2 marks)
- (g) Suppose X and Y are independent random variables. Show that

$$E[X|Y=y] = E[X]$$

(4 marks)

QUESTION TWO (20 MARKS)

- (a) What are Lebesgue measurable sets? (2 marks)
- (b) Describe any two Lebesgue measurable sets (4 marks)
- (c) If μ is a σ -finite measure on an algebra A of subsets of S. Show that:
 - i. there exists an increasing sequence (5 marks)
 - ii. there exists a disjoint σ -finite sequence (5 marks)
- (d) Prove that if $0 \le f_n \to f$ almost everywhere and $\int f_n d\mu \le A < \infty$, then f is integrable and $\int f d\mu \le A$ (4 marks)

QUESTION THREE (20 MARKS)

- i. Let g_1 and g_2 be measurable functions on a common domain. Show that each set $\{\omega: g_1(\omega) < g_2(\omega)\}$, $\{\omega: g_1(\omega) = g_2(\omega)\}$ and $\{\omega: g_1(\omega) > g_2(\omega)\}$ is measurable (8 marks)
- ii. Suppose $f = \sum_i x_i I_{Ai}$ is a non negative simple function, and $\{A_i\}$ decomposed from S into F sets, show that

$$\int f d\mu = \sum_{i} x_{i} \mu(A_{i})$$

(6 marks)

iii. Let $P,q,r\in [1,\infty]$ satisfy $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Prove that for all measurable f and g defined on a space (X,A,μ) , we haven $||fg||_r\leq ||f||_p||g||_q$ (6 marks)

QUESTION FOUR (20 MARKS)

- i. State and explain two properties of conditional expectation (4 marks)
- ii. Let $X = N(\mu, \sigma)$, obtain the characteristic function of X; hence use it to derive the mean and variance of X (10 marks)
- iii. A random sample of 32 is taken from a population whose pdf is given by

 $f(x) = \begin{cases} \frac{1}{2\pi} x^{-\frac{1}{2}e^{-\frac{x}{4}}} \\ o, otherwise \end{cases}$

Use CLT to compute the approximate probability that the mean of the random variable will extend 2.4 (6 marks)

QUESTION FIVE (20 MARKS)

- i. State Fubini's theorem (2 marks)
- ii. Find the integral $f(x,y) = x^2 + y^2$, on the domain $D = \{(x,y) \in R^2: 0 < x < 1, x^2 < y < x\}$ (8 marks)
- iii. If the sequence $\{B_n\}$ is of independent events and $\sum_n Pr\{B_n\} = \infty$. Show the probability that B_n occurs infinitely often is one. (10 marks)