(Knowledge for Development) # KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE MATHEMATICS COURSE CODE: STA 348 COURSE TITLE: STATISTICAL COMPUTING **DATE**: 11/02/2021 **TIME**: 8 AM -11 AM # INSTRUCTIONS TO CANDIDATES Answer Question One and Any other TWO Questions TIME: 2 Hours This Paper Consists of 5 Printed Pages. Please Turn Over. # **QUESTION ONE (30 MARKS)** - (a) List with details ,three compulsory and five optional requirements in creating a data file - (b) Income can be measured on several levels. Describe how income could be measured as an ordinal, interval and ratio measure. - (c) Enumerate 4 ways in which SPSS can transform data - (d) A function Y is given by $y=\sin(x)$ and another function z is given by $z=\cos(x)$ Write m.scripts that can be executed in MATLAB to generate corresponding sine and cosine waves respectively (12 marks). # **QUESTION TWO (20 MARKS)** A matrix B is given by B=[1,4,3,2;2,1,3,2;1,2,3,4;5,2,1,4] - (a). Describe how you can extract a $2 \times 2$ matrix from the third raw and second column (4 marks). - (b).Explain how you can determine Mean, Standard Deviation of the first two columns of matrix B (6 marks) - (c). The correlation coefficients of rows and columns in matrix B can be given by: 1.0000 -0.3149 -0.9685 0.4575 -0.3149 1.0000 0.1325 -0.2294 -0.9685 0.1325 1.0000 -0.5774 0.4575 -0.2294 -0.5774 1.0000 (i) . Describe how you can generate such correlation coefficients from matrix $\boldsymbol{B}$ using a MATLAB command .Explain statistical interpretations and importance of three sets of columns whose correlation coefficients are 1,0 and -1 respectively (10 marks) ### **QUESTION THREE (20 MARKS)** - a) Suppose you have the following Research Question - To what extent does weight of a car in pounds predict miles per gallon in a U.S. dataset of 398 models of cars? - i) Are the two variables discrete or continuous? - ii) Are the two variables nominal, ordinal, interval or ratio scales? - iii) Which statistical procedure could we use to test the research question? - iv) What is the null hypothesis? - v) What is your expectation? - b) The regression SPSS output of the above question was as below. Use it to answer the following questions # **Model Summary** | Model | R | R Square | Adjusted<br>R Square | Std. Error of the Estimate | |-------|-------------------|----------|----------------------|----------------------------| | 1 | .807 <sup>a</sup> | .651 | .650 | 4.622 | a. Predictors: (Constant), Vehicle Weight (lbs.) #### **ANOVA**b | Model | | Sum of<br>Squares | df | Mean Square | F | Sig. | |-------|------------|-------------------|-----|-------------|---------|-------| | 1 | Regression | 15794.632 | 1 | 15794.632 | 739.503 | .000a | | | Residual | 8457.943 | 396 | 21.358 | | | | | Total | 24252.575 | 397 | | | | a. Predictors: (Constant), Vehicle Weight (lbs.) b. Dependent Variable: Miles per Gallon ### Coefficientsa | Model | | Unstandardized<br>Coefficients | | Standardized<br>Coefficients | | | |-------|-----------------------|--------------------------------|------------|------------------------------|---------|------| | | | В | Std. Error | Beta | t | Sig. | | 1 | (Constant) | 45.492 | .841 | | 54.110 | .000 | | | Vehicle Weight (lbs.) | 007 | .000 | 807 | -27.194 | .000 | a. Dependent Variable: Miles per Gallon - i) How much variance in Miles Per Gallon is explained by Car Weight? - ii) Is this variance explained significantly different to 0? - iii) What is the constant - iv) What is the slope? - v) Is the slope statistically significant? - vi) Write out the model regression equation - vii) What is the standardised regression coefficient for vehicle weight? - viii) If a car weighed 1000 pounds, what would be the predicted miles per gallon? - ix) What is the standard error of the estimate? - x) What would be the approximate 95% confidence interval of our prediction # **QUESTION FOUR (20 MARKS)** #### **ANOVA** Age of Respondent | | Sum of Squares | df | Mean Square | F | Sig. | | |----------------|----------------|------|-------------|-------|------|--| | Between Groups | 2784.189 | 2 | 1392.095 | 4.409 | .012 | | | Within Groups | 477048.215 | 1511 | 315.717 | | | | | Total | 479832.404 | 1513 | | | | | #### **Multiple Comparisons** Dependent Variable: Age of Respondent LSE | (I) Race of | (J) Race of | Mean | Std.<br>Error | Sig. | 95% Confidence Interval | | |-------------|-------------|----------------------|---------------|------|-------------------------|----------------| | Respondent | Respondent | Difference (I-<br>J) | | | Lower<br>Bound | Upper<br>Bound | | White | Black | 2.930* | 1.344 | .029 | .29 | 5.57 | | | Other | 5.609* | 2.587 | .030 | .53 | 10.68 | | Black | White | -2.930* | 1.344 | .029 | -5.57 | 29 | | | Other | 2.679 | 2.828 | .344 | -2.87 | 8.23 | | | White | -5.609* | 2.587 | .030 | -10.68 | 53 | | Other | Black | -2.679 | 2.828 | .344 | -8.23 | 2.87 | <sup>\*.</sup> The mean difference is significant at the 0.05 level. Consider the SPSS output above - (a) State the Procedure for one-way between-groups ANOVA with post-hoc tests - (b) Explain the interpretation of output from one-way between-groups ANOVA with post-hoc tests # **QUESTION FIVE (20 MARKS)** A market researcher is interested in the coffee drinking habits of males and females. He asks a sample of male and female office workers to record the number of cups of coffee they consume during a week. - a) Which parametric statistical technique could the researcher use to determine if males and females differ in terms of the number of cups of coffee consumed in a week? Justify your answer and describe how you would obtain this statistic using SPSS. - b) What are the key values you would look for in the output? - c) What assumptions should you check for when using the technique that you chose in question (a), above. - d) What non-parametric technique could be used to address this research question?