

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR SCIENCE

MATHEMATICS

COURSE CODE: STA 348

COURSE TITLE: STATISTICAL COMPUTING

DATE: 11/02/2021 **TIME**: 8 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a) List with details ,three compulsory and five optional requirements in creating a data file
- (b) Income can be measured on several levels. Describe how income could be measured as an ordinal, interval and ratio measure.
- (c) Enumerate 4 ways in which SPSS can transform data
- (d) A function Y is given by $y=\sin(x)$ and another function z is given by $z=\cos(x)$

Write m.scripts that can be executed in MATLAB to generate corresponding sine and cosine waves respectively (12 marks).

QUESTION TWO (20 MARKS)

A matrix B is given by B=[1,4,3,2;2,1,3,2;1,2,3,4;5,2,1,4]

- (a). Describe how you can extract a 2×2 matrix from the third raw and second column (4 marks).
- (b).Explain how you can determine Mean, Standard Deviation of the first two columns of matrix B (6 marks)
- (c). The correlation coefficients of rows and columns in matrix B can be given by:

1.0000 -0.3149 -0.9685 0.4575 -0.3149 1.0000 0.1325 -0.2294 -0.9685 0.1325 1.0000 -0.5774 0.4575 -0.2294 -0.5774 1.0000

(i) . Describe how you can generate such correlation coefficients from matrix \boldsymbol{B} using a MATLAB command .Explain statistical interpretations and importance of three sets of columns whose correlation coefficients are 1,0 and -1 respectively

(10 marks)

QUESTION THREE (20 MARKS)

- a) Suppose you have the following Research Question
 - To what extent does weight of a car in pounds predict miles per gallon in a U.S. dataset of 398 models of cars?
 - i) Are the two variables discrete or continuous?
 - ii) Are the two variables nominal, ordinal, interval or ratio scales?

- iii) Which statistical procedure could we use to test the research question?
- iv) What is the null hypothesis?
- v) What is your expectation?
- b) The regression SPSS output of the above question was as below. Use it to answer the following questions

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.807 ^a	.651	.650	4.622

a. Predictors: (Constant), Vehicle Weight (lbs.)

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15794.632	1	15794.632	739.503	.000a
	Residual	8457.943	396	21.358		
	Total	24252.575	397			

a. Predictors: (Constant), Vehicle Weight (lbs.)

b. Dependent Variable: Miles per Gallon

Coefficientsa

Model		Unstandardized Coefficients		Standardized Coefficients		
		В	Std. Error	Beta	t	Sig.
1	(Constant)	45.492	.841		54.110	.000
	Vehicle Weight (lbs.)	007	.000	807	-27.194	.000

a. Dependent Variable: Miles per Gallon

- i) How much variance in Miles Per Gallon is explained by Car Weight?
- ii) Is this variance explained significantly different to 0?
- iii) What is the constant
- iv) What is the slope?
- v) Is the slope statistically significant?

- vi) Write out the model regression equation
- vii) What is the standardised regression coefficient for vehicle weight?
- viii) If a car weighed 1000 pounds, what would be the predicted miles per gallon?
- ix) What is the standard error of the estimate?
- x) What would be the approximate 95% confidence interval of our prediction

QUESTION FOUR (20 MARKS)

ANOVA

Age of Respondent

	Sum of Squares	df	Mean Square	F	Sig.	
Between Groups	2784.189	2	1392.095	4.409	.012	
Within Groups	477048.215	1511	315.717			
Total	479832.404	1513				

Multiple Comparisons

Dependent Variable: Age of Respondent

LSE

(I) Race of	(J) Race of	Mean	Std. Error	Sig.	95% Confidence Interval	
Respondent	Respondent	Difference (I- J)			Lower Bound	Upper Bound
White	Black	2.930*	1.344	.029	.29	5.57
	Other	5.609*	2.587	.030	.53	10.68
Black	White	-2.930*	1.344	.029	-5.57	29
	Other	2.679	2.828	.344	-2.87	8.23
	White	-5.609*	2.587	.030	-10.68	53
Other	Black	-2.679	2.828	.344	-8.23	2.87

^{*.} The mean difference is significant at the 0.05 level.

Consider the SPSS output above

- (a) State the Procedure for one-way between-groups ANOVA with post-hoc tests
- (b) Explain the interpretation of output from one-way between-groups ANOVA with post-hoc tests

QUESTION FIVE (20 MARKS)

A market researcher is interested in the coffee drinking habits of males and females. He asks a sample of male and female office workers to record the number of cups of coffee they consume during a week.

- a) Which parametric statistical technique could the researcher use to determine if males and females differ in terms of the number of cups of coffee consumed in a week?
 Justify your answer and describe how you would obtain this statistic using SPSS.
- b) What are the key values you would look for in the output?
- c) What assumptions should you check for when using the technique that you chose in question (a), above.
- d) What non-parametric technique could be used to address this research question?