

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OFBSC (PHYSICS)

COURSE CODE:

SPH 414

COURSE TITLE:

QUANTUM MECHANICS II

DURATION: 2 HOURS

DATE: 12TH NOVEMBER, 2020

TIME:9:00AM-12:00PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to enamination cheating

The following rules of commutator algebra may be used where necessary

$$[A, B] = AB - BA = -[B, A] = 0$$

$$[A, B+C] = [A, B] + [A, C]$$

 $[A+B, C] = [A, C] + [B, C]$

$$[A, BC] = [A, B]C + B[A, C]$$

$$[AB,C] = A[B,C] + [A,C]B$$

$$\begin{bmatrix} A, \begin{bmatrix} B, C \end{bmatrix} \end{bmatrix} + \begin{bmatrix} B, \begin{bmatrix} C, A \end{bmatrix} \end{bmatrix} + \begin{bmatrix} C, \begin{bmatrix} A, B \end{bmatrix} \end{bmatrix} = 0$$

SPH 414: QUANTUM MECHANICS II

QUESTION ONE[30 Marks]

- a) The un-normalized wave function for a particle moving in a one dimensional potential well V(x) is given by: $\psi(x) = exp\left(\frac{-ax^2}{2}\right)$. If the potential is to have minimum value at x = 0. determine (i) the eigenvalue (ii) the potential, U(x).
- b) Simplify the arbitrary products of spin half operators; S_xS_y,S_zS_y,S_zS_x . [3 Marks]
- c) Show that;
 - i) $J_{+}J_{-} = J^{2} J_{z}^{2} + \hbar J_{z} [3 \text{ Marks}] S_{x}S_{y} = \frac{1}{2}i\hbar S_{z}$ [2 Marks]
 - ii) Find the commutators; $[\sigma_+ \sigma_-]$ [2 Marks]
- d) Verify that $S^2 \alpha = \frac{3}{4} \hbar^2 \alpha$ and $S_2 \alpha = \frac{\hbar}{2} \beta$, where symbols have their usual meaning. [4 Marks]
- e) Show that;
 - i) $[J_z, J_+] = J_+$ (iii) $[J_x, J_y] = iJ_z$ [4 Marks]
- f) State the Pauli spin matrices $\sigma_x \sigma_y \sigma_z$ and show that $\sigma_x \sigma_y = -\sigma_y \sigma_x = i\sigma_z$

$=i\sigma_z$ [6 Marks]

QUESTION TWO [20 Marks]

- a) Write down an expression for the z-component of angular momentum, L_z , of a particle moving in the (x, y) plane in terms of its linear momentum components p_x and p_y . [2Marks]
- b) Using the operator correspondence $P_x = -i\hbar \frac{\partial}{\partial x}$ etc., show that;

$$L_Z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

Hence show that $L_Z = -i\hbar \frac{\partial}{\partial \varphi}$, where the coordinates (x,y) and (r, φ)are related in the usual way. [4Marks]

- c) Given that $L = r \times p$, show that $[L_{x_i}L_{y_i}] = i\hbar L_z$ [7Marks]
- d) Use the rules of the commuter algebra to find the values of; $[L_{x,p_y}]$ and $[L^2,L_x]$ [7Marks]

QUESTION THREE [20 Marks]

Obtain the angular momentum matrices for J^2 , J_z , J_x and J_y for the case of j=1 particles.

[20 Marks]

QUESTION FOUR [20 Marks]

a) What is perturbation theory?

[2 Marks]

- b) Show that the first order correction energy E⁽¹⁾ for a non degenerate level is just a perturbation H averaged over the corresponding unperturbed state of the system.
- c) Given the unperturbed Hamiltonian for the linear harmonic oscillator $H_0 = \frac{p^2}{2m} + \frac{1}{2}kx^2$, k > 0 and the unperturbed energy levels $E_n^{(0)} = \hbar\omega\left(n + \frac{1}{2}\right)$ n=0, 1, 2 ..., Write the perturbed eigen functions [6 Marks] and eigen values

QUESTION FIVE [20 Marks]

a) The one-dimensional time-independent Schrodinger equation is;

$$\left(-\frac{\hbar^2}{2m}\right)\frac{d^2\psi(x)}{dx^2} + U(x)\psi(x) = E\psi(x)$$

Give the meanings of the symbols in this equation.

[4 Marks]

b) A particle of mass m is contained in a one-dimensional box of width a. The potential energy U(x) is infinite at the walls of the box (x = 0 and x = a) and zero in between ($0 \le x \le a$). Solve the Schrodinger equation for this particle and hence show that thenormalized solutions have the form;

$$\psi_n(x) = \left(\frac{2}{a}\right)^{0.5} \sin\left(\frac{n\pi x}{a}\right)$$

With energy;

$$E_n = \frac{h^2 n^2}{8ma^2}$$

where nis an integer (n>0).

[10 Marks]

c) For the casen=3, find the probability that the particle will be located in the region a/3 < x < 2a/3.

[3Marks]

d) Sketch the wave-functions and the corresponding probability density distributions for the [3Marks] casesn=1,2 and 3.