



(Knowledge for Development)

## KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

**MATHEMATICS** 

COURSE CODE:

MAP 121/MAT 104

**COURSE TITLE:** ALGEBRAIC STRUCTURES I

DATE:

16/02/2021

TIME: 11 AM -1 PM

#### **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

# QUESTION ONE (30 MARKS)

| a.                                                                                                                                                                                                                                                                                                                                                                               | (8 Marks)                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| i. Determine the group of symmetries of $D_4$                                                                                                                                                                                                                                                                                                                                    | (1 Mark)                                                    |
| ii. What is the order of $D_4$                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| b. Let $\Omega = \{1,2,2,\dots,n \text{ and let } s_n \text{ denote the set of all permutations} \}$                                                                                                                                                                                                                                                                             | (4 mortes)                                                  |
| Show that $s_n$ is a group under composition of elements                                                                                                                                                                                                                                                                                                                         | (4 marks)                                                   |
| c. Show that cosets are either identical or disjoint                                                                                                                                                                                                                                                                                                                             | (4 marks)                                                   |
| d. Show that G is cyclic if $ G  = p$ is a prime                                                                                                                                                                                                                                                                                                                                 | (3 marks)                                                   |
| e. Define the following                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                         |
| i. Subgroup                                                                                                                                                                                                                                                                                                                                                                      | (2 marks)                                                   |
| ii. Cyclic subgroup                                                                                                                                                                                                                                                                                                                                                              | (2marks)                                                    |
| iii. Lagranges theorem                                                                                                                                                                                                                                                                                                                                                           | (2 marks)                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                  | (2 marks)                                                   |
| iv. Coset  v. Group                                                                                                                                                                                                                                                                                                                                                              | (3 marks)                                                   |
| <ul> <li>QUESTION TWO (20 MARKS)</li> <li>a. Let Z<sub>15</sub> ≥ ⟨5⟩ = {0,5.10} for k∈Z<sub>15</sub>, and the left coset is k+</li> <li>cosets of &lt;5&gt; in Z<sub>15</sub></li> <li>b. Determine the symmetric group s<sub>3</sub></li> <li>c. Define the following</li> <li>i. Bijective function</li> <li>ii. Inverse of a function</li> <li>iii. Union of sets</li> </ul> | (5 marks) (7 marks) (2 marks) (2 marks) (2 marks) (2 marks) |
| iv. Binary operation                                                                                                                                                                                                                                                                                                                                                             |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |

### QUESTION THREE (20 MARKS)

(3 marks) State three properties of rings (3 marks) Show that  $Z_4$  is not a field b. Construct a cayley table for multiplication in  $\mathbb{Z}_6$ (3 Marks) (2 marks) In a field, show that a product of two nonzero elements is nonzero e. If a, b, c are elements of a field and  $a \neq 0$ , show that the following (2 marks) cancellation law holds  $ab = ac \implies b = c$ Define the following (2 marks) i. Ring (3 marks) ii. Field

#### QUESTION FOUR (20 MARKS)

a. Find the difference. Write the answer in standard form.

i.  $(4x^2 - 3) - (2x^2 + 6)$  (3 marks)

ii.  $(-3x^3 + 7) - (5x^3 - x^3)$  (2 marks)

b. Define the following

i. Solving binomial equations (1 mark)

ii. Circulant matrices (1 Mark)

c. Generate a  $3 \times 3$  circulant matrix starting with [a, b, c] (3 marks)

d. Consider the circulant matrix

 $C = \begin{matrix} 1 & 2 & 1 & 3 \\ 3 & 1 & 2 & 1 \\ 2 & 1 & 3 & 1 \end{matrix}$ 

i. Read the polynomial q from the first row of C. (1 mark)

ii. With n=4, determine the nth roots of unity (2 marks)

iii. Compute the eigenvalues of C. (4 marks)

e. Compute the corresponding eigenvectors (4 marks)

### QUESTION FIVE (20 MARKS)

- a. If S is a subset of the group G, show that s is a subgroup of G if and only if S is nonempty and whenever  $a, b \in S$ , then  $ab^{-1} \in S$  (4 marks)
- b. If A is an invertible matrix, show that its inverse is unique (5 marks)
- c. For the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Verify that  $x_1 = (-3 - 1 \ 1)$  and  $x_2 = (1 \ 0 \ 0)$  are eigenvectors of A and find their corresponding eigenvalues (4 marks)

- d. Define the following
  - i. Trivial subgroup (1mark)
  - ii. Subgroup generated by x (2marks)
- e. Give four examples of fields (4 marks)