

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAA 211/MAT 203/MAT 214

COURSE TITLE:

VECTOR ANALYSIS

DATE:

16/02/2021

TIME: 11 AM - 1 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question 1: Compulsory (30 marks)

- a. Find the terminal point of the vector v = 7i j + 3k, given that the initial point is P = (-2, 3, 5) (3mks)
- b. When do we say two vectors are orthogonal? (2mks)
- c. Given the vectors u = 3i j + 2k and v = -4i + 2k find the angle between u and v (3mks)
- d. Show that the diagonals of a parallelogram bisect each other (6 mks)
- e. Prove that the dot product of two vectors $u \cdot v = |u||v|\cos\theta$ where θ is the angle between the vectors (4mks)
- f. If $f = (x^2y^3 z^4)i + 4x^5y^2zj y^4z^6k$ find i). curl f ii). div f iii). div(curl f) at (1,-1,1) (5mks)
- g. The position of a moving particle is given by $r(t) = 2\cos ti + 2\sin tj + 3tk$. Find the vectors T, N, B and the curvature (7mks)

Question 2

- a. When do we say a vector is irrotational? Prove that that the vector $F = (y + yz)i + (x + 3z^3 + xz)j + (9yz^2 + xy 1)k$ is a irrotational hence find its potential function ϕ for F (10mks)
- b. Evaluate $\int_c xy^2 dx$ on the quarter circle c defined by $x=\cos t, y=4\sin t$ (10mks)

Question 3

- a. Find the work done by $F = (y x^2)i + (z y^2)j + (x z^2)k$ over the curvature $r(t) = ti + t^2j + t^3k$ from (0,0,0) to (1,1,1) (10mks)
- b. State the divergence theorem hence evaluate $\iint_s F.nds$ where the vector $F = 4xzi y^2j + yzk$ and s is the surface of a cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 (10mks)

Question 4

- a. Verify Green's theorem for $\oint_c (xy+y^2)dx + x^2dy$ where c is the region bounded by the curves y=x and $y=x^2$ (10mks)
- b. Define the following terms

(10 mks)

- i). The unit tangent T
- ii). The principal normal N
- iii). The bi-normal B
- iv). The curvature, k
- v). Torsion

Question 5

- a. Verify Stokes' theorem for F=xyi+yzj+xzk where s is that part of the cylinder $z=1-x^2$ for $0 \le x \le 1, -2 \le y \le 2$ assuming s is oriented upward (10mks)
- b. Let $F=x^2+y^2+z^2$; evaluate $\iiint_v F dv$ where v is the region bounded by x+y+z=a (a>0), x=0, y=0, z=0 (10mks)