

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR SCIENCE

COURSE CODE: MAT 407

COURSE TITLE: FUNCTIONAL ANALYSIS

DATE:

03/02/2021

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY)(30 marks)

a) Define the nested sequence of a subspace $X \subseteq \mathbb{R}$

(3 marks)

b) Show that a set A is bounded if and only if the $diamA < \infty$ i.e diameter of A is finite.

(6 marks)

c) Define the term contraction mapping

(3 marks)

d) If (X,d) is a metric space and $E\subseteq X$, then show that E is open if E^c is closed (4marks)

e) Define the term metric space of a set $\, X \,$ with a metric $\, d. \,$

(6 marks)

f) Let (X,d) be a complete metric space $f:(X,d)\to (X,d)$ a function, for some $p\in N$ and >0, for a contraction map f^p , Show that f has a unique fixed point. (8 marks)

QUESTION TWO (20marks)

a) Let (X,d) be a metric space , Prove that

i) \emptyset , X are open in (X, d)

(6 marks)

ii) Finite intersection of open sets is open in (X, d)

(8 marks)

b) if E is a compact subset of (X, d) then show that E is bounded

(6 marks)

QUESTION THREE(20 marks)

Let (X,d) be a metric space, then the following conditions are equivalent

i) (X, d) is a complete.

(6 marks)

ii) For every nested sequence (A_n) of closed subsets of X with $diam A_n \to 0$ as $n \to \infty$

We have

 $\bigcap_{n=1}^{\infty} A_n = \{x\}$ for some $x \in X$. Prove this theorem.

(12 marks)

And

name the theorem you have just proved.

(2 marks)

QUESTION FOUR (20 marks)

a). Define the open neighborhood of a point in a metric space (X, d)

(3 marks)

b). Let (X, d) be a metric space and Y be a nonvoid subset of X.

Let $dy(x,y) = d(x,y) \quad \forall \ x,y \in Y$, and then show that (Y,dy) is a metric space.

(9 marks)

c). State without proof the Banach Fixed Point Theorem.

(4 marks)

d). Let (X,d) be a metric space. Then show that any convergent sequence (x_n) in (X,d) is Cauchy. (4 marks)

QUESTION FIVE(20 marks)

a) Show that the metric space $[C[0,1],d_{\infty}]$ is complete.

(10 marks)

b) Let (X,d) is a metric space and (Y,d_y) a subspace of (X,d). Then prove that if $E\subseteq Y$ then, E is open in (Y,d_y) iff $E=G\cap Y$ for some subset G open in (X,d).

(10 marks)