

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
FOURTH YEAR FIRST SEMESTER
SPECIAL/ SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR SCIENCE

COURSE CODE: MAT 405

COURSE TITLE: MEASURE THEORY

DATE: 17/02/2021 **TIME**: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY)(30 marks)

a) Show that the measure is additive

i.e
$$\mu(\bigcup_{i=1}^{n} E_i = \sum_{i=1}^{n} \mu(E_i)$$

(8mks)

b) Let $A,B\subseteq\mathbb{R}$ with $\mu*(A)<\infty,\mu*(B)<\infty$

Prove that
$$|\mu^*(B) - \mu^*(A)| \leq \mu^*(A\Delta B)$$

(6 mks)

If
$$E \subseteq \mathbb{R}$$
 and $\mu^*(E) = 0$ then prove that $E \in \mathcal{M}$ (6 mks)

- a) Define the term measurable space, hence name any two examples of measurable spaces (5mks)
- b) Let $A, B \subseteq \mathbb{R}$ and $\mu * (A) = 0$ show that

$$\mu * (A \cup B) = \mu * (B)$$

(5mks)

QUESTION TWO (20 marks)

a) State any three properties that are satisfied by the outer measure $\mu *$

(6mks)

b) State without proof lebesque monotone convergent theorem.

(4mks)

c) Let X and Y be none – empty sets and Y be a σ – Algebra of subsets of Y.

Let
$$f: X \to \mathbb{R}$$
 be a function and $X = \{f^{-1}(E) : E \in Y\}$.

Then show that X is a $\sigma-Algebra$ of subsets of X.

(10 mks)

QUESTION THREE(20 marks)

a) Let (X, X, μ) be a measurable space and (f_n) a sequence of elements from $m^+(X, X)$ then prove that ,

$$\int \frac{\lim}{n \to \infty} f_n \ d\mu \quad \le \quad \frac{\lim}{n \to \infty} \int f_n \ d\mu \tag{16 marks}$$

b) Define an algebra

(4 marks)

QUESTION FOUR (20 marks)

a) Let (X, \mathfrak{X} , $\mu)$ be a measure space f, $g \in M^+(X$, $\mathfrak{X})$ and c a non-negative real constant, show that $\int (f+g) \ d\mu = \int f \ d\mu + \int g \ d\mu$

(10 mks)

b) Prove that the outer measure is countably sub - additive.

i.e.

$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) \leq \sum_{n=1}^{\infty} \mu^* \left(E_n \right) \ \forall \ n = 1,2,3,4,\dots \dots \infty$$

(10 marks)

QUESTION FIVE (20 marks)

Let (X, X, μ) be a measure space and (f_n) a monotone increasing sequence of elements of $m^+(X, X)$ converging to f pointwise on X. Then prove that

$$\lim_{n\to\infty} \int f_n \ d\mu = \int f d\mu$$

(20 marks)