



(Knowledge for Development)

# KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE

COURSE CODE: MAT 423

COURSE TITLE: ODE II

**DATE:** 05/02/2021

**TIME:** 11 AM -1 PM

# INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

# QUESTION ONE (30mks)

- a) Show that the solutions  $\emptyset_1(x) = e^x$ ,  $\emptyset_2(x) = e^{-2x}$  and  $\emptyset_3(x) = e^{-x}$  to a differential equation are linearly independent. (8mks)
- b) Show that the solution of the system

$$\dot{x} = \begin{pmatrix} -1 & 0 & 0 \\ -2 & -1 & 2 \\ -3 & -2 & -1 \end{pmatrix} x \text{ is asymptotically stable.}$$
 (10mks)

c) If 
$$x(t)=c_1\begin{pmatrix}1\\2\end{pmatrix}e^t+c_2\begin{pmatrix}1\\1\end{pmatrix}e^{-2t}$$
 is a general Solution , Find a particular solution given that  $x(o)=I$  (12mks)

# QUESTION TWO (20mks)

If  $y = \sum_{n=1}^{\infty} \alpha_n x^{n+p}$ , apply the appropriate differentiation in the Bessel's equation given by:

$$x^2y + xy' + (x^2 - p^2)y = 0$$
 to show that  $a_n = -\frac{a_{n-2}}{n(2p-n)}$  (10mks)

and that 
$$a_4 = -\frac{a_n}{4(2p+4)} = \frac{a_0}{2.4(2p+2)(2p+4)}$$
 (10mks)

# QUESTION THREE (20mks)

- a) Use Picard's method to approximate the value of ywhenx = 0.1given that y = 1when x = 0 and  $\frac{dy}{dx} = 3x + y^2$  (8mks)
- b) Solve the system of linear equations given by:

$$(D-1)x + Dy = 2t + 1$$
(2D + 1)x + 2Dy = t (12mks)

### QUESTION FOUR (20mks)

Find the fundamental matrix for the system of equation  $X' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} x$  (20mks)

### QUESTION FIVE (20mks)

a) Explain what is meant by stability of linear systems and hence give the conditions for a solution  $x = \emptyset(x)$  of  $\dot{x} = Ax$  to be

b) Determine the stability or instability of the following systems of differential equations;

i. 
$$\dot{x} = \begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix} x$$
 (4mks)

ii. 
$$\dot{x} = \begin{pmatrix} 0 & -3 \\ 2 & 0 \end{pmatrix} x \tag{3mks}$$

iii. Solve the system of linear differential equations given by:

$$2\frac{dx}{dt} + \frac{dy}{dt} - 4x - y = e^t$$

$$\frac{dx}{dt} + 3x + y = 0 ag{9mks}$$