



(Knowledge for Development)

## KIBABII UNIVERSITY

# UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE (MATHEMATICS)** 

COURSE CODE:

**MAT 434** 

COURSE TITLE: DIFFERENTIAL GEOMETRY

**DATE**: 10/11/2020

TIME: 2 PM -4 PM

#### INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

#### QUESTION ONE (30marks)

a). Define the following terms

- i). Rectifiable arc (2 mks)
- ii). Curvature of a curve (1 mk)
- iii). Bertrand curves (1 mk)
- iv). Ordinary point on a surface (2 mks)
- b). Determine the curvature of the curve  $r(t) = ti + 3 \sin t j + 3 \cos t k$ . (4 mks)
- c). Let  $\gamma$  be a curve lying on the surface X=X(u,v) where  $u=u(t), v=v(t), a\leq t\leq b$ . Prove that the length of the arc on the curve is given by  $\int_a^b \sqrt{I} \ dt$  where I is the first fundamental form of a surface. (4 mks)
- d). Find the volume of the parallelepiped with vertices at O,P,Q and R having coordinates (0,0,0), (1,2,4), (-2,3,-5) and (0,1,-1) respectively. (3 mks)
- e). Determine the arc length of the curve  $X(t) = 4e^{2t}\cos t \,\hat{e}_1 + 4e^{2t}\sin t \,\hat{e}_2 + 4e^{2t}\,\hat{e}_3$  for

$$0 \le t \le \frac{\pi}{2}. \tag{5 mks}$$

- f). Find the equation of the tangent line and normal plane to the curve  $X(t)=(1+t)\hat{e}_1-t^2\hat{e}_2+(1+t^3)\hat{e}_3$  at t=1. (4 mks)
- g). State and derive the first fundamental form of a surface X = X(u, v) whose class is more or equal to 1. (4 mks)

### QUESTION TWO (20marks)

- a). Find the unit tangent vector to the curve  $X(t) = \langle 2t + t^2, t + \frac{t^2}{2}, 2t^2 \rangle$  at t = 1. (3 mks)
- b). Prove that the curvature of the curve X = X(t) is

$$\kappa = \frac{|X' \times X''|}{|X'|^3} \tag{5 mks}$$

c). Determine the lines of curvature to the helicoid  $r(u, v) = \langle u \cos v, u \sin v, av \rangle$ . (12 mks)