138

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE) AND BSC (PHYSICS)

COURSE CODE:

SPH 415

COURSE TITLE:

THERMODYNAMICS

DURATION: 2 HOURS

DATE: 11th November, 2020

TIME: 9:00AM-12:00PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 MARKS)	(1 mark)
a) Differentiate between an open and a closed system	(1 mark)
said to be in equilibrium.	(3 marks)
1	
 What constitutes the internal energy of a system. A fluid of volume 0.05 m³ is contained behind a piston at a pressure of 1.0 A fluid of volume 0.05 m³ is contained behind a piston at a pressure, the final volume 10⁶N/m². After a reversible expansion of constant pressure, the final volume 10⁶N/m². The last the work done by the fluid. 	
10 ⁶ N/m ² . After a reversible expansion is 0.2m ³ . Calculate the work done by the fluid.	(1 mark)
TVI -t is a cyclic process:	(3 marks)
f) Explain with an example the term quasi-static process	(1 mark)
g) State the Carnot's theorem The compression ratio of a diesel engine is about 15. The cylinder contains ai	r of (4 marks)
volume 10 m at 1.03 × 10 pm	uns
stroke. Assume that all behaves as adiabatic. Take the value of γ for air to be 1.4 adiabatic. Take the value of γ for air to be 1.4 Given the following constants for the van der Waals equation for call γ . Using the	rbon (4 marks) Van
dioxide $a = 0.37Nm4m0t$ and a dioxide gas at	0.5
der Waals equation find the pressure of $0.55Lmol^{-1}$.	(1 mark)
i) Define the Zeroth Law of thermodynamics j) Define the Zeroth Law of thermodynamics	
A sectain volume of gas contained benind a position 106 N/m ² and 0.00	5 m^3
If the initial pressure and volume are $1.0 \times 10^{-10/11}$ tand respectively and final volume is 0.06 m^3 . Determine the work done respectively and final volume is 0.06 m^3 .	
1 de avenanción follows the latter	
Engine absorbs heat at 227°C and rejects at 27°C. Determine	
efficiency. m) Ten grams of water at 20°C are converted into ice at 0°C at converted atmospheric pressure. Calculate the entropy of	nstant (4 marks) hange.
QUESTION TWO (20 MARKS)	
	(1 mark)
a) What is thermodynamics?	namics; (3 marks)
a) What is thermodynamics?b) What do you understand by the following terms as used in thermodynamics and characteristical thermodynamics and characteristical thermodynamics.	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	if () III a ()
c) A certain volume of fluid at a pressure of 1.0 x 10° N/m is contained a cylinder behind a piston. If the initial volume is 0.05 m ³ , calculate the cylinder behind a when it expands reversibly according to	a law
c) A certain volume of a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston. If the initial volume is 0.05 m, calculate a cylinder behind a piston in cylinder behind a cylinder behind a piston.	N/m^{2} . (
done by the fluid when it expanses $\frac{a}{b} = \frac{b}{b}$ to a final volume of 0.1 m ³ final pressure of 1.0 x 10 ⁵	

 $P = \frac{a}{V^2} - \frac{b}{V}$ to a final volume of 0.1 m³ final pressure of 1.0 x 10⁵ N/m². (

a and b are constants)

- d) Differentiate between extensive and intensive variable in a thermodynamic (2 marks) system giving an example in each case
- e) For two systems namely A and B that are in thermal contact with each other and the surrounding, show that heat gained by one equals to heat lost by the other
- f) Using Figure 1 below, answer the following

- i) State the terms that remain constant in each of the observed graph (2 marks) (in figure 1)
- ii) Define the thermodynamic terms associated to each of the stated constant terms in (i) above (2 marks)

QUESTION THREE (20 MARKS)

- a) A gram molecule of gas at $227^{\circ}C$ is compressed isothermally until its volume is doubled. Find the amount of work done and Heat absorbed. $(R = 8.3 \times 10^7 \, ergs/K)$
- b) From basic principles of an isothermal process show that (6 marks) $\frac{P}{P}$
- $Q = TR \ln \frac{V_2}{V_1} = RT \ln \frac{P_1}{P_2}$ c) State the three characteristics of Carnot's cycle (3 marks)
- d) Derive the Poisson's law for a reversible adiabatic change (6 marks)
- e) Determine the specific heat for a closed system for constant pressure (3 marks)

QUESTION FOUR (20 MARKS)

- a) One kilogram of ice at 0°C is melted and converted to water at 0°C. The water is then heated from its original temperature to 100°C. Compute the total change in entropy. Take the specific latent heat of fusion of ice as 333, 624.2 J/Kg and the specific heat capacity of water as 42000J/Kg
- b) Show that the condition for a thermodynamic equilibrium in a system in thermal and mechanical contact with a heat and pressure reservoir is that the Gibbs function is a minimum

c) Derive the Clausius – Clapeyron's Latent heat equation (6 marks)

QUESTION FIVE (20 MARKS)

- a) A block of metal is squashed reversibly and isothermally at temperature T (8 marks) from pressure (P_1) to pressure (P_2) . Calculate the heat that flows out of the metal
- b) Use the energy equation to show that the rate of change of internal energy (8 marks) with respect to volume at constant temperature is zero
- c) Determine the work done by an ideal gas in an adiabatic expansion (4 marks)