

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

SECOND YEAR SECONDSEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF
B.SC RENEWABLE ENERGY AND BIOFUELS TECHNOLOGY

COURSE CODE:

REN 221

COURSE TITLE:

THERMODYNAMICS I

DURATION: 2 HOURS

DATE: 4/2/2021

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

- (i) Answer Question 1 (Compulsory) and any other TWO questions
- (ii) All symbols have their usual meaning
- (iii) Use steam tables provided

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (Compulsory) - 30 Marks

a) State the Non-Flow Energy Equation.

(4 Marks)

b) Steam at 110 bar has a specific volume of 0.0196 m³/kg. Find the following properties:

i) Temperature.

(3 Marks)

ii) Internal energy.

(3 Marks)

c) Given steam at 0.5MPa with an enthalpy of 2.4MJ/kg, determine the:

(i) Dryness fraction.

(5 Marks)

(ii) Specific volume.

(2 Marks)

(iii) Internal energy.

(2 Marks)

d) Show that for a perfect gas the following specific heats can be expressed as shown below:

(i)
$$C_v = \frac{R}{\gamma - 1}$$

(4 Marks)

(ii)
$$C_p = \frac{\gamma R}{\gamma - 1}$$

(3 Marks)

(e) Give two conditions for a thermodynamic equilibrium.

(4 Marks)

QUESTION TWO (20 Marks)

Steam at a pressure of 1.28MN/m² enters a turbine with a velocity of 26m/s and a specific volume of 0.14m³/kg. After a steady flow through the turbine the steam leaves at a pressure of 38kN/m², a velocity of 80m/s and a specific volume of 4m³/kg. The internal energy of steamleaving the turbine is 260kJ/kg less than that of the steam entering the turbine. Heat is lost to the surroundings at a rate of 0.3kJ/s. The steam flow is 0.4kg/s. Calculate the:

a) Power developed by the turbine.

(14 Marks)

b) Inlet and outlet cross-sectional areas.

(6 Marks)

QUESTION THREE (20 Marks)

A fluid at $6\times10^4\text{N/m}^2$, occupying a volume of 0.3m^3 is compressed reversibly to a pressure of $0.24\times10^6\text{N/m}^2$ according to a law pvⁿ= constant. The fluid is then heated reversibly at a constant volume until the pressure is $38\times10^4\text{N/m}^2$ and a specific volume of $0.3\text{m}^3/\text{kg}$. The fluid is expanded reversibly according to the law pv² = constant to the initial state.

a) Show the process on a p-v diagram.

(3 Marks)

b) Calculate the mass of the fluid.

(5 Marks)

c) Determine the value of n in the first process.

(5 Marks)

d) Calculate the net work done on or by fluid in the cycle.

(7 Marks)

QUESTION FOUR (20 Marks)

A fluid whose mass is 1kg is contained in a cylinder. The fluid is expanded reversibly behind a piston according to a law pv^2 = constant until its initial volume is doubled. The fluid is then cooled reversibly under constant pressure until the piston is at its original position; heat is then supplied reversibly with the piston firmly locked in position until the pressure rises to its initial value.

- a) Show the process on a P-V diagram. (4 Marks)
- b) If the initial pressure and volume are 18bar and 0.04m³ respectively, calculate the net work done on or by the fluid.(16 Marks)

QUESTION FIVE (20 Marks)

a) Show from first principles that the heat flow in a polytropic process is given by:

$$Q = \left(\frac{\gamma - n}{\gamma - 1}\right) W$$

(10 Marks)

- b) Carbon dioxide at 1 bar is compressed reversibly until the pressure is 6 bar according to the law $PV^{1.4}$ = constant. If the initial specific volume is 0.6 m³/kg, calculate the:
 - (i) Final temperature.(3 Marks)
 - (ii) Work done on the gas.(2 Marks)
 - (iii) Heat flow to or from the cylinder walls. (5 Marks)