

(Knowledge for Development) KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

STA 442

COURSE TITLE:

MULTIVARIATE ANALYSIS

DATE: 10/11/2020

TIME: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) The following are data for young boys in a given region

Individual	Height (cm)	Chest circumference (cm)	MUAC (cm)	
1	78	60.6	16.0	
2	76	58.1	12.5	
3	92	63.2	14.4	
4	81	59.0	14.0	
5	81	60.8	15.5	
6	84	59.5	14.0	

MUAC-Mid-upper-arm circumference

Obtain the sample variance-covariance matrix and comment on the relationship between the different variables. (13 marks)

b) Find the maximum likelihood estimators of the mean vector $\underline{\mu}$ and covariance matrix Σ based on the data matrix (6 marks)

$$x = \begin{bmatrix} 4 & 1 \\ -1 & 3 \\ 3 & 5 \end{bmatrix}$$

c) Let $\underline{x} = [0,4,3]$ and $\underline{y} = [-1,2,0]$. Find

- (i) The length of x (2marks)
- (ii) The angle between \underline{x} and y (3marks)
- (iii) The length of the projection of \underline{x} on \underline{y} (2marks)

d) Let $A = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$

- (i) Is A symmetric? Give reason. (1mk)
- (ii) Obtain Eigen value (3marks)

QUESTION TWO [20 MARKS]

Let $\underline{X} = (X_1, X_2, X_3)^t$ follow a $N \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ distribution and define $Y = X_1 + X_2$.

a) Determine the mean and variance of Y.

(5 marks)

- b) The variance covariance matrix of $Y = (Y_1, Y_2)$ where $Y_1 = x_1 x_2$ and $Y_2 = x_1 + x_3$
- c) Show that the sample mean is an unbiased estimator of $\underline{\mu}$ and that the sample variance is (10marks) biased estimator of matrix Σ

QUESTION THREE [20 Marks]

(a) Let \underline{x} be a trivariate random vector such that

 $E(\underline{x}) = 0$ and $var(\underline{x}) = \begin{bmatrix} 2.5 & 0 & 10 \\ 0 & 1.5 & 0 \\ 10 & 0 & 1 \end{bmatrix}$. Find the expected value of the quadratic form

$$Q = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$$
 (4mks)

(b) Using the variance-covariance matrix in part (c) find

(3mks) The variance of $Y = x_1 - 2x_2 + x_3$

- The variance covariance matrix of $Y = (Y_1, Y_2)$ where $Y_1 = x_1 + x_2$ and (ii) (3mks) $Y_2 = x_1 + 2x_2 + x_3$
- (c) Consider the following n = 3 observations on p = 2 variables

Variable 1: $y_{11} = 2$, $y_{21} = 3$, $y_{31} = 4$ Variable 1: $y_{12} = 1$, $y_{22} = 2$, $y_{32} = 4$

- Compute the sample means \bar{y}_1 and \bar{y}_2 and the sample variances S_{11} and S_{22} (i)
- Compute the sample covariance S_{12} and the sample correlation coefficient r_{12} and (ii) (4mks) interpret these quantities

QUESTION FOUR (20MARKS)

- (a) Let \underline{y} be a p-variate random vector with mean vector $\underline{\mu}$ and variance covariance matrix Σ , show that $E(\underline{YY'}) = \Sigma + \underline{\mu}\underline{\mu}'$, hence show that $E(Y'AY) = trace(A\Sigma) +$ (8mks) $\underline{\mu'}A\underline{\mu}$ where A is a symmetric matrix of constants.
- (b) Find the symmetric matrix A for a quadratic form $Q(Y_1, Y_2, Y_3) = 9Y_1^2 + 16Y_1Y_2 +$ $Y_2^2 + 8Y_1Y_3 + 6Y_2Y_3 + 3Y_3^2$. Hence obtain the expected value of $Q(Y_1, Y_2, Y_3)$ and

$$E(Y'AY) \text{ given that } \boldsymbol{\mu} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{pmatrix} 1&0&-1\\0&4&2\\-1&2&9 \end{pmatrix}$$
 (12mks)

QUESTION FIVE [20 MARKS]

(a) Given the data matrix
$$Y = \begin{bmatrix} 1 & 9 & 10 \\ 4 & 12 & 16 \\ 2 & 10 & 12 \\ 5 & 8 & 13 \\ 3 & 11 & 14 \end{bmatrix}$$

Define $Y_c = Y - 1\overline{Y}'$ as the mean corrected data matrix.

- (4mks) Obtain the mean corrected data matrix (i)
- (4mks) Obtain the sample covariance matrix (ii)
- The generalized variance and hence verify that columns of mean corrected data (iii) matrix are linearly dependent.
- Specify a vector $V' = [v_1 \ v_2 v_3]$ that establishes the linear dependence. (3mks) (iv)
- (b) Let \underline{x} be a random vector having the covariance matrix

$$\Sigma = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 25 & -1 \\ 1 & -1 & 9 \end{bmatrix}$$

(6mks)

Obtain the population correlation matrix (ρ) and $V^{\frac{1}{2}}$