

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE: MAT 404

COURSE TITLE: DIFFERENTIAL TOPOLOGY

DATE: 06/11/2020 **TIME**: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE: COMPULSORY (30 MARKS)

- (a) Define the following terms in relation to differential topology.
 - (i)An n-dimensional Topological manifold (2mks)
 - (ii)A chart (2mks)
 - (iii)An Atlas (2mks)
- (b) Show that the map $S^n = \{P \in \mathbb{R}^{n+1}/|P| = 1\}$ is an n-dimensional manifold. (5mks)
- (c) Let M be a manifold and A a smooth atlas on M. Show that D(A) is a smooth atlas. (6mks).
- (d) Let $f: M \to N$ be a smooth map where M and N are n-dimensional manfolds. When does $p \in M$ become a regular point. (3mks)
- (e) Define a tangent space over a smooth n-dimensional manifold. (4mks)
- (f) Using illustration state the inverse function theorem. (3mks)
- (g)Let (M, A) and (N, B) be smooth manifolds and $p \in M$. When does the continuous map $f: M \to N$ become smooth at p. (3mks)

QUESTION TWO (20 mks)

- (a) Show that if $f:(M,u) \to (N,v)$ and $g:(N,v) \to (P,w)$ are smooth then the composition $g \circ f:(M,u) \to (P,w)$ is a smooth manifold also. (8mks)
- (b)Let U be an open set in R^1 and $f: U \to R^1$ a continuously differentiable map.Let C be the set of critical points of f such that

 $C = \{x \in U: f(x) = 0\}$. Then show that f(c) has measure zero in R^1 . (12mks)

QUESTION THREE (20 marks)

(a)Let $f: X \to N$ be a smooth map, where X is a smooth manifold with boundary and N a smooth manifold. Let S be a closed embedded submanifold of N. Show that the set of points $x \in X$ where f is transversal to S, is an open set of X.

(8mks)

- (b) (i)Using three examples define an immersion of a topological manifold. (6mks)
 - (ii)Using illustration define a submersion of a manifold. (6mks)

QUESTION FOUR (20 marks)

- (a) Show that if $y \in Y$ is a regular value of $f: X \to Y$ then $f^{-1}(y)$ is a manifold of dimension n - m, since dim(X) = n dim(Y) = m.
- (b)State the sard's theorem and give five areas where the theorem is applicable.
- (4mks) (c)State the regular value theorem.

QUESTION FIVE (20 marks)

- (a) Show that if $f: M \to N$ is a smooth map where M is n + k dimensionaland N is n-dimensional then if q=f(p) is a regular value then $f^{-1}(q)\subseteq M$ is a k-dimensional smooth submanifold.
- (10mks) (b)Using illustrations describe the rank of a linear transformation