



(Knowledge for Development)

### **KIBABII UNIVERSITY**

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MAT 110

COURSE TITLE: BASIC CALCULUS

**DATE**: 13/5/2021

TIME: 9:00 A.M - 11:00 A.M

#### INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

## QUESTION ONE (30 MARKS)

- (a) Define the following terms
  - Function i.

Implicit function ii.

(2 marks)

(b) Evaluate  $\lim_{t\to\infty} \frac{x^3+1}{3tx^3-4x+5}$ 

(3 marks)

- (c) Using 1st principal of differentiation find the derivative of  $y = 3x^3 2x^2 + 2x + 4$
- (d) Given  $f(t) = t^2 + 1$   $g(t) = \frac{3}{t}$  and h(t) = 2t determine the following composite functions
  - i. h(g(t))
  - ii. g(h(t))
  - iii. g(f(t))
  - (4 marks) iv. f(g(t))
  - (e) Find  $\frac{dy}{dx}$  given  $x = \sin 2xy + e^{2xy}$

(3 marks)

(f) Find  $\frac{dy}{dx}$  given  $y = t^3 + 1$ ,  $x = t^3 - 1$  at t = 5

- (2 marks)
- (g) Find the equation tangent and normal given  $x(t) = t^2 + 1$  and  $y(t) = \sqrt{1+t}$  at the point
- (h) Differentiate

i. 
$$y = \frac{2sin3x}{3x^2}$$
  
ii.  $y = (1 + x^2)^5 lnx^2$  (6 marks)

# QUESTION TWO (20 MARKS)

- (a) Given the equation of the curve  $y = \frac{x^4}{4} \frac{4x^3}{3} + \frac{x^2}{2} + 6x + 4$ , investigate the nature of the (10 marks) stationary points hence plot the graph
- (5 marks) (b) Using 1st principal of differentiation find the derivative of  $y = \sin x$
- (c) State the Rolle's theorem hence find the value of c satisfiying the conclusion of Rolle's (5 marks) theorem for  $f(x) = x^3 + 2x^2 - x - 1$  on the interval (-1,1)

### **QUESTION THREE (20 MARKS)**

- (a) A particle P moves along a straight line OX. At time t = 0 P is at the point O and t seconds later its displacement S m is given by  $S = t^3 6t^2 + 9t$ 
  - i. Write an expression for velocity and acceleration of P at t seconds
  - ii. Find when and where the particle will be at instantaneously at rest
  - iii. Find when and where the particle will be when  $\frac{d^2s}{dt^2} = 0$  (6 marks)
- (b) An object is moving vertically according to the equation  $s = 100t t^2$  where t is time in seconds and S is the height of the object above the ground in feet
  - i. Find the velocity of the object when t = 5 seconds
  - ii. What is the time when the object starts to move downwards?
  - iii. How high does the object go

(6 marks)

(c) Find y' and y'' of  $y = \frac{\sin x}{x^2}$  and hence prove that  $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + (x^2 + 2)y = 0$  (8 marks)

#### **QUESTION FOUR (20 MARKS)**

- (a) Define the following terms
  - i. Normal and Tangent line
  - ii. Maximum and minimum points

(4 marks)

(b) Find the derivatives of the following functions

i. 
$$\frac{d^4y}{dx^4} \text{ of } y = 2\sin 5x$$

$$2x^3 - 4yx^2 = \cos y$$

iii. 
$$y = e^{2t} lnt sin 3t$$

iv. 
$$y = sinx^3$$
 (12 marks)

(c) Show that the slope of the tangent to the graph of the equation  $sinxy = x^2 cosy$  at  $(2, \frac{\pi}{2})$  is  $\frac{\pi}{4}$  (4 marks)

### QUESTION FIVE (20 MARKS)

- (a) Prove that  $\lim_{\theta \to 0} \frac{\cos \theta 1}{\theta} = 0$  (5 marks)
- (b) Find y' given that  $y \ln x = xe^y 1$  (4 marks)
- (c) If the radius r of a sphere is increasing at 2cm/s. Find the rate at which the volume of the sphere is increasing when radius is 3cm (leave your answer in terms of  $\pi$ ) (3marks)
- (d) Investigate the stationary values of the function  $y = x^3 3x^2 + 3x + 8$  hence sketch the curve (6 marks)
- (e) Evaluate the limit of  $\lim_{x\to 0} \frac{1-\cos x}{x^2}$  (2 marks)