

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

MAIN CAMPUS

MASTERS FIRST YEAR SECOND SEMESTER EXAMINATIONS

COURSE CODE: STA 806

COURSE TITLE: THEORY OF LINEAR MODELS

DATE: 18/5/2021 TIME: 9:00 A.M - 12:00 NOON

INSTRUCTIONS TO CANDIDATES:

Answer Question one and any other two questions.

QUESTION ONE (30 MARKS)

a) Consider a linear regression model.

Show that the model can be written in matrix form as

 $\underline{Y} = X\beta + \underline{\varepsilon}$, Where \underline{Y} , β and $\underline{\varepsilon}$ are vectors of order n×1; (k+1) ×1 and n×1 respectively, while X is a matrix of order n×(k+1). (4marks)

$$\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y \tag{4marks}$$

- b) Let $S^2 = \frac{1}{n-k-1} \sum_{i=1}^n (y_i \underline{X}_i^T \underline{\beta})^2$ where \underline{X}_i^T is the i-th row of the matrix X. Show that if $Var(\underline{\varepsilon}) = \sigma^2 I$ then $E(S^2) = \sigma^2$ (6marks)
- c) In part (b) Let $\hat{Y} = \hat{\beta}_0^{\Lambda} + \hat{\beta}_1^{\Lambda} X$ be the predicted value of Y. Let $\underline{X}^T = (1 \ X)$ such that $\hat{Y} = \hat{\beta}_x^T \underline{X} + \varepsilon$

Show that if $\underline{Z}^T = (1 \text{ cx})$ where c $\hat{y} = \overset{\wedge}{\beta_x^T} \underline{X}$ where $\overset{\wedge}{\beta_z}$ is the Least square estimator of $\underline{\beta}$ assuming $Y = \underline{\beta}^T \underline{Z} + \varepsilon$ (6marks)

- d) Let $\underline{Y} = \beta_0 + \beta_1 X + \varepsilon$ where ε is the error term. Using results in part (b) or, otherwise deuce the least square estimators of β_0 and β_1 say $\beta_0^{\hat{\Lambda}}$ and
- $\stackrel{\scriptscriptstyle \Lambda}{eta_{\scriptscriptstyle 1}}$ respectively

Show that

(i).
$$E(\hat{\beta}_0) = \beta_0$$

(ii).
$$E(\hat{\beta}_1) = \beta_1$$

Determine

(Iii). Var (
$$\stackrel{\wedge}{eta_0}$$
)

(iv). Var (
$$\hat{\beta}_1$$
)

(v). Cor
$$(\beta_0^{\Lambda}, \beta_1^{\Lambda})$$

(10 marks)

QUESTION TWO (20 MARKS)

- e) Show that if E(Y) = X $\underline{\beta}$ and Cor (\underline{Y}) = $\sigma^2 I$ then the least square estimators $\hat{\beta}_j$, j = 0,1,...,k, have minimum variance among all linear unbiased estimators. (10marks)
 - b) Using part (a) or otherwise, show that if $E(\underline{Y}) = X\underline{\beta}$ and $Cov(\underline{Y}) = \sigma^2 I$, then the best linear unbiased estimator of $\underline{a}^T\underline{\beta}$ is $\underline{a}^T\underline{\hat{\beta}}$ where $\underline{\hat{\beta}}$ is the least square estimator of $\underline{\beta}$.
- f) Does the results in part (a) rely on the distribution of the random vector \underline{Y} ?

 Comment (5marks)

QUESTION THREE (20 MARKS)

- a) Show that if $\underline{Y} \sim N_n[X \underline{\beta}, \sigma^2 I]$ where X is $n \times (k+1)$ matrix of rank k+1<n, the maximum likelihood estimator of $\underline{\beta}$ and σ^2 are $\underline{\hat{\beta}} = (X^T X)^{-1} X^T \underline{Y}$ and $\sigma^2 = \frac{1}{n} (\underline{Y} X \underline{\hat{\beta}})^T (\underline{Y} X \underline{\hat{\beta}})$ (10 marks)
- b) Using the results in part (a), or otherwise, Show that
 - (i). $\underline{\beta}^{\Lambda}$ is $N_{k+1} [\underline{\beta}, \sigma^2 (X^T X)^{-1}]$
 - (ii) $n \frac{\sigma^2}{\sigma^2}$ is chi-square with degrees of freedom = n-k-1
 - (iii). $\frac{\hat{\beta}}{\beta}$ and σ^2 are independent. (10 marks)

QUESTION FOUR (20 MARKS)

Consider the data in the following table

Observation	Υ	X ₁	X_2
Number			
1	2	0	2
2	3	2	6
3	2	2	7
4	7	2	5
5	6	4	9
6	8	4	8
7	10	4	7
8	7	6	10
9	8	6	11
10	12	6	9
11	11	8	15
12	14	8	13

a) Show how the date can be modeled by a regression model given by $\underline{Y} = X \; \underline{\beta} + \underline{\varepsilon} \qquad (5 \text{marks})$

(b). Compute the least square estimate of $\frac{\hat{\beta}}{\underline{\beta}}$. (5marks)

(c). If $Var(\underline{\varepsilon}) = \sigma^2 I$ is known, calculate $Var(\underline{\hat{\beta}})$. (5marks)

(d). Calculate the estimate of the estimator S², defined in question one (b).

(5 marks)

QUESTION FIVE (20 MARKS)

Suppose we fit the model $\underline{Y} = X_1 \beta_1^x + \varepsilon^x$ when the correct model is

$$\underline{Y} = X_1 \beta_1 + X_2 \beta_2 + \underline{\varepsilon}$$
 with
$$Cov(\underline{Y}) = \sigma^2 I$$

(a). Show that (i) the best square estimator for

$$\underline{\beta}_{1}^{x} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}_{1}^{T}Y$$

(ii)
$$E(\underline{\beta}_1^x) = \underline{\beta}_{1+} \underline{\beta}_{2}$$
, where $A = (X_1^T X_1)^{-1} X_1^T X_2$

(iii). Cov
$$(\underline{\beta}_{1}^{x}) = \sigma^{2}(X_{1}^{T}X_{1})^{-1}$$

(iv). If columns of X_1 are orthogonal to columns of X_2 then $\underline{\beta}_1^x$ is unbiased.

(b). Let
$$\frac{\hat{\beta}}{\underline{\beta}} = (X^T X)^{-1} X^T Y$$
 from the full model be partitioned as $\frac{\hat{\beta}}{\underline{\beta}} = \begin{pmatrix} \frac{\hat{\beta}}{\underline{\beta}_1} \\ \frac{\hat{\beta}_2}{\underline{\beta}_2} \end{pmatrix}$, and let

 $\beta_1^{\Lambda} = (X^T X)^{-1} X_1^T Y$ be the estimator for the reduced model.

Show that

(a).
$$Cov(\frac{\Lambda}{\underline{\beta}_1}) - Cov(\frac{\Lambda}{\underline{\beta}_1}) = \sigma^2 A B^{-1} A^T$$
, which is a positive definite matrix, where
$$A = (X_1^T X_1)^{-1} X_1^T X_2 \qquad B = X_2^T X_2 - X_2^T X_1 A$$

(b).
$$Var(\hat{\beta}_{j}^{\Lambda}) > Var(\hat{\beta}_{j}^{\Lambda})$$

(c).
$$\operatorname{Var}\left(\underline{X}_{0}^{T} \stackrel{\Lambda}{\underline{\beta}}\right) \geq \operatorname{Var}\left(\mathbf{X}_{01}^{T} \stackrel{\Lambda}{\underline{\beta}_{1}^{x}}\right)$$

where
$$\underline{X}_0 = \begin{pmatrix} \underline{X}_{01} \\ \underline{X}_{02} \end{pmatrix}$$