

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

MAIN CAMPUS

MASTERS FIRST YEAR SECOND SEMESTER EXAMINATIONS

COURSE CODE: STA 831

COURSE TITLE: NON-PARAMETRIC METHODS

DATE: 19/5/2021 TIME: 9:00 A.M - 12:00 NOON

INSTRUCTIONS TO CANDIDATES:

Answer Question one and any other two question

QUESTION ONE (30MARKS)

- (a). Explain the meaning of the following as applied in non-parametric statistical inference.
 - i). Non-parametric hypothesis
 - ii). Distribution-free statistics
 - iii). m-sample tests
 - iv). the Kruskal-Wallis statistic. (8 marks
- (b). Let X_1, X_2, \dots, X_n denote a random sample from a continuous population with cumulative distribution function, $F_X(x)$. Show that if

 $X_{(1)}$ < < $X_{(n)}$ denote the n order statistics from the

Population then the joint probability density function of the n order statistics

$$f(y_1, y_2,..., y_n) = n! \pi_{j=1}^n f_x(y_j)$$
, $0 < y_1 < ... < y_n$

.where

$$f_x(x) = \frac{d}{dx} F_x$$
 (13 marks)

c). Consider the following data on an empirical distribution function $S_n(x)$ and a hypothesized distribution $F_0(x)$ on 25 subjects and selected values of a random variable X.

$$X=x$$
 1 4 10 25 60 80 100 $nS_n(x)$ 4 10 13 17 21 24 25 $nF_0(x)$ 2 5 9 16 17 19 25

Use the Kolmogorov-Smirnov two sided test procedure to test at 5% level of significance the hypothesis.

$$H_0 F(x) = F_0(x)$$
 against $H_a:F(x) \neq F_0(x)$ (8 marks)

QUESTION TWO (20 MARKS)

- a). State and prove the probability integral transform theorem
- b). Show that if U(r) is the r^{th} order statistic from the uniform distribution on the interval (0,1), for r=1,2,...,n then

$$E\left(U_{(r)}^{k}\right) = \frac{\alpha(\alpha+1)....(\alpha+k-1)}{(\alpha+\beta)(\alpha+\beta+1)....(\alpha+\beta+k-1)}$$
 where α = r-1 and β = n-r + 1 (6 marks)

- c). Using the results in part (b), or otherwise determine
 - i). E(U(r))

ii). $Var(U_{(r)})$ (6 marks)

d). Show that if $X_{(r)}$ is the r-th order statistic from a continuous population with cumulative distribution function, F(x), then $E(U_{(r)}^k) \cong F^{-1}\left(\frac{r}{n+1}\right)$ (6 marks)

QUESTION THREE (20 MARKS)

- (a). Describe the Karl-Pearson goodness-of -fit test statistics and show that under appropriate conditions(specify) it has a chi-square distribution. (6 marks)
- (b). Let X_1, X_2, \dots, X_n be a random sample from some continuous distribution, F(x).
 - (i). Define the corresponding empirical distribution function $S_n(\boldsymbol{x})$
 - (ii). Show that $S_n(x)$ is an unbiased consistent estimator of F(x). (8 marks)

(c). Let
$$D_n^+ = \sum_{x}^{Sup} \{S_n(X) - F(X)\}$$

Given for $y \ge 0$

$$\lim_{n \to 0} P\left(D_n^+ < \frac{y}{\sqrt{n}}\right) = 1 - e^{-2y^2}$$

Deduce the limiting distribution of the statistics $V = 4n(D_n^+)^2(6 \text{ marks})$

QUESTION FOUR (20 MARKS)

(a). Let M_x denote the median of the distribution for the random variable X. Suppose $X_1 \ X_2 \dots X_n$ is a random sample from the distribution.

To test

 $H_0:M_x=M_0$, M_o known verses $H_a:M_x\neq M_0$, the Wilcoxon's signed rank test st

atistic, T⁺, may be used.

(i). Define T⁺

Show that when H₀ is true, for a random sample of size n,

(ii).
$$E(T^+) = \frac{n(n+1)}{4}$$

(iii).
$$Var(T^+) = \frac{n}{24} (n - 1)(2n+1)$$
 (12 marks)

(b). Suppose (X_1, Y_1) , (X_2, Y_2) ,, (X_n, Y_n) is a random samp le from a

Continuous bivariate distribution with the distribution function F(x,y).

erence

from F(x,y), construct a $100(1 - \alpha)\%$ confidence interval for the unknown median of differences M_D based on the statistic T⁺. (8 marks)

QUESTION FIVE (20 MARKS)

a) Explain the advantages of Non-parametric statistical inferences over the (10 marks) Traditional parametric inferences.

(b) A researcher planted maize at the same rate in 8 small plots of ground, then weeded the maize rows by hand to allow no weeds in 4 randomly selected plots and exactly 3 lamb's-quarter weed plants per meter of row in the other 4 plots. The table below gives data on the yield of maize per acre in each of the plots.

Weeds per m eter	Yield			
	166.7	172.2	165.0	176.9
3	158.6	176.4	153.1	156.0

Test

H₀: No difference in distribution of yields

Ha: Yields are systematically higher in weed- free plots

Using:

 $i)W_N$

ii)H

(10 marks)